DOI QR코드

DOI QR Code

Effects of Dietary Inuloprebiotics on Egg Production and on the Microbial Ecology and Blood Lipid Profile of Laying Hens

이눌로프리바이오틱스의 급여가 산란계의 혈액지질, 맹장 미생물, 계란 생산성에 미치는 효과

  • Park, Sang-Oh (Department of Animal Biotechnology, Kangwon National University) ;
  • Park, Byung-Sung (Department of Animal Biotechnology, Kangwon National University)
  • 박상오 (강원대학교 동물생명공학과) ;
  • 박병성 (강원대학교 동물생명공학과)
  • Received : 2012.02.06
  • Accepted : 2012.07.13
  • Published : 2012.07.30

Abstract

This study was carried out to investigate the effects of inuloprebiotics (INPs), an alternative antibacterial growth promotor, from Jerusalem artichoke extract (Helianthus tuberosus L.) on egg production and quality in Hyline brown laying hens. The hens were divided randomly into four treatment groups and housed in individual cages for 10 weeks: a control group (0 ppm INP) (T1), 450 ppm (T2), 600 ppm (T3), and 750 ppm (T4). Egg production, egg weight, Haugh unit, eggshell thickness, and breaking strength were significantly higher in all of the INP-treated groups compared with the control (p<0.05). Egg cholesterol was highest in the T1 group and decreased with INP addition from 15.04 to 17.98% (p<0.05). Compared with the T1 group, triglycerides in the blood and in total cholesterol decreased significantly in groups T2, T3, and T4 by 21.71-24.07% and 27.17-30.36%, respectively (p<0.05). The growth of cecum Bifidobacterium and Lactobacillus was stimulated in groups T2, T3, and T4 compared with T1, whereas the growth of Escherichia and Salmonella was clearly inhibited (p<0.05). The results suggest that the addition of 450 ppm INP to the diet of laying hens can improve egg production and egg quality.

본 연구는 산란계 사료 내 항균성장촉진제로써 돼지감자(Helianthus tuberosus L.)로부터 추출, 제조한 이눌로프리바이오틱스(Inuloprebiotics, INP)의 고수준 첨가가 산란능력 및 계란품질에 미치는 영향을 조사하기 위해 실시하였다. 29주령의 갈색산란계(Hyline brown) 320마리를 이용하여 처리구당 80마리씩 개체별, 반복구로 나누어서 완전임의 배치한 후 10주 동안 실험사료를 급여하였다. 실험처리구는 T1 (무첨가 대조군), T2 (INP 450 ppm 첨가군), T3 (INP 600 ppm 첨가군) 및 T4 (INP 750 ppm 첨가군)로 구분하였다. 산란율, 난중, 사료섭취량 및 계란의 호우유니트, 난각두께, 파란강도는 T1과 비교할 때 T2, T3, T4가 유의하게 높았으나(p<0.05) T2, T3, T4 사이의 통계적인 유의차는 인정되지 않았다. 계란의 콜레스테롤은 T1이 가장 높았고 T4, T3, T2 순서로 이눌로프리바이오틱스 첨가구에서 15.04-17.98%까지 유의하게 감소하였다(p<0.05). 계란 포화지방산 조성은 T2, T3, T4가 T1에 비해서 낮았으나 불포화지방산은 그 반대로 유의하게 높았다(p<0.05). 혈액 중성지방 및 총콜레스테롤은 T1과 비교할 때 T2, T3, T4에서 21.71-24.07% 및 27.17-30.36%로 유의하게 감소하였다(p<0.05). 맹장의 유익한 미생물, Bifidobacterium, Lactobacillus의 성장은 T2, T3, T4가 T1과 비교할 때 자극되었으나 유해한 Escherichia, Salmonella의 성장은 뚜렷하게 억제되었다(p<0.05). 본 연구결과는 이눌로프리바이오틱스 450 ppm을 산란계 사료 내 첨가해주면 산란성적 및 계란품질을 향상시킬 수 있음을 시사해준다.

Keywords

References

  1. Ahn, J., Grun, I. U. and Mustapha, A. 2007. Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiol. 24, 7-14. https://doi.org/10.1016/j.fm.2006.04.006
  2. Azorin-Ortuno, M., Urban, C. C., Ceron, J. J., Tecles, F., Allende, A. and Barberan, F. A. 2009. Effect of low inulin doses with different polymerisation degree on lipid metabolism, mineral absorption, and intestinal microbiota in rats with fat-supplemented diet. Food Chem. 113, 1058-1065. https://doi.org/10.1016/j.foodchem.2008.08.062
  3. Causey, J. L., Xin-chua, Y., Tungland, B. C., Feirtag, J. M., Gallaher, D. G. and Slavin, J. L. 2000. Effect of dietary inulin on serum lipids, blood glucose and the gasatrointestinal environment in hypercholesterolemic men. Nutr. Res. 20, 191-201. https://doi.org/10.1016/S0271-5317(99)00152-9
  4. Close, B., Banister, K., Baumans, V., Bernoth, E. M., Bromage, N., Bunyan, J., Erhardt, W., Flecknell, P., Gregory, N., Hackbarth, H., Morton, D. and Warwick, C. 1997. Recommendations for euthanasia of experimental animals, Part 2. Lab. Anim. 31, 1-32. https://doi.org/10.1258/002367797780600297
  5. Delzenne, N. M. and Kok, N. 1999. Biochemical basis of oligofiuctose-induced hypolipidemia in animal models. J. Nutr. 129, 14675-14705.
  6. Devaraj, S., Vega-Lopez, S., Kaul, N., Schonlau, F., Rohdewald, P. and Jialal, I. 2002. Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile. Lipids 37, 931-934. https://doi.org/10.1007/s11745-006-0982-3
  7. Dorotea, L. M. and Maris, D. N. M. 2005. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry 66, 1476-1484. https://doi.org/10.1016/j.phytochem.2005.04.003
  8. Fernandez, F., Hinton, M. and van Gils, B. 2002. Dietary annan-oligosaccharides and their effect on chicken caecal microflora inrelation to Salmonella Eenteritidis colonization. Avian Pathol. 31, 49-58. https://doi.org/10.1080/03079450120106000
  9. Fiordaliso, M. F., Kok, N., Desager, J. P., Goethals, F., Deboyser, D., Roberfroid, M. and Delzenne, N. 1995. Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoprotein of rats. Lipids 30, 163-167. https://doi.org/10.1007/BF02538270
  10. Folch, L., Lees, M. and Sloane-Stanley, S. H. A. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-507.
  11. French, A. D. 1989. Chemical and physical properties of fructans. Plant Physiol. 134, 125-136. https://doi.org/10.1016/S0176-1617(89)80044-6
  12. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  13. Gibson, G. R. and Rastall, R. A. 2006. Prebiotics: Development and application. John Wiley and Sons, Ltd., USA.
  14. Gibson, G. R., Bead, E. R., Wang, X. and Cummings, J. H. 1995. Selective stimulation of bifidobacteria in the human colon by oligofluctose and inulin. Gastroenterology 108, 975-982. https://doi.org/10.1016/0016-5085(95)90192-2
  15. Gibson, G. R. and Wang, X. 1994. Bifidogenic properties of different types of fructooligosaccharides. Food Microbiol. 11, 491-498. https://doi.org/10.1006/fmic.1994.1055
  16. Gong, J., Forster, R. J., Yu, H., Chambers, J. R., Sabour, P. M., Wheatcroft, R. and Chen, S. 2002. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol. Lett. 208, 1-7. https://doi.org/10.1111/j.1574-6968.2002.tb11051.x
  17. Isolauri, E., Sutas, Y., Kankaanpaa, P.,Arvilommi, H. and Salminen, S. 2001. Probiotics: Effects on immunity. Am. J. Clin. Nutr. 73, 444S-450S.
  18. Kim, M. and Shin, H. K. 1998. The water soluble extract of chicory influences serum and liver lipid concentrations, cecal short chain fatty acid concentrations and fecal lipid excretion in rats. J. Nutr. 128, 1731-1736.
  19. Lesson, S. and Summers, F. D. 1991 Commercial poul-try nutrition. Canada NIH 6N8. 77-148.
  20. Lopez, H. W., Courdray, C., Ballanger, J., Younes, H., Demigne, C. and Rimbsy, C. 1998. Intestinal fermentation lessens the inhibitory effects of phytic acid on mineral utilization in rats. J. Nutr. 128, 1192-1198.
  21. Mitsuoka, T. 1990. Bifidobacteria and their role in human health. J. Induct. Micro. 6, 263-268. https://doi.org/10.1007/BF01575871
  22. Modler, H. W., McKellar, R. C. and Yaguchi, M. 1990. Bifidobacteria and bifidogenic factors- review. Can. Inst. Food Sci. Technol. J. 23, 29-41. https://doi.org/10.1016/S0315-5463(90)70197-6
  23. Morrison, W. R. and Smith, L. M. 1967. Preparation of fatty acid methylesters and dimethylacetals from lipid with boron fluoride methanol. J. Lipid Res. 5, 600-608.
  24. Munoa, F. J. and Pares, R. 1988. Selective medium for isolation and enumeration of bifidobacterium SPP. App. Environ. Microbiol. 54, 1715-1718.
  25. Naeemi, E. D., Ahmid, N., Al-Sharrah, T. K. and Behbahani, M. 1995. Rapid and simple method for determination of cholesterol in processed food. J. AOAC Int. 78, 1522-1525.
  26. National Research Council. 1994. Nutrients requirements of poultry. 9th rev. National Academy Press, Washington DC.
  27. Park, S. O. and Park, B. S. 2011a. Effect of dietary micro-encapsulated-inulin on carcass characteristics and growth performance in broiler chickens. J. Anim. Vet. Adv. 10, 1342-1349. https://doi.org/10.3923/javaa.2011.1342.1349
  28. Park, S. O. and Park, B. S. 2011b. Influence of inuloprebiotic supplementation of the diets of broiler chickens on shelf-life and quality characteristics of meat. J. Anim. Vet. Adv. 10, 1336-1341. https://doi.org/10.3923/javaa.2011.1336.1341
  29. Park, B. S. 2008. Bifidogenic effects of inuloprebiotics in broiler chickens. J. Life. Sci. 18, 1693-1699. https://doi.org/10.5352/JLS.2008.18.12.1693
  30. Park, B. S. and Son, D. H. 2008. Feed composition for replacing antibiotic comprising inulin originated from jerusalem artichoke. WIPO Patent Application WO/2008/075878.
  31. Patterson, J. A. and Burkholder, K. M. 2003. Application of prebiotics in poultry production. Poult. Sci. 82, 627-631. https://doi.org/10.1093/ps/82.4.627
  32. Rada, V., Duskova, D., Marounek, M. and Petr, J. 2001. Enrichment of Bifidobacteria in the hen caeca by dietary inulin. Folia Microbiol. 46, 73-75. https://doi.org/10.1007/BF02825891
  33. Rehman, H., Hellweg, P., Taras, D. and Zentek, J. 2008. Effects of dietary inulin on the intestinal short chain fatty acids and microbial ecology in broiler chickens as revealed by denaturing gradient gel electrophoresis. Poult. Sci. 87, 783-789. https://doi.org/10.3382/ps.2007-00271
  34. Roberfroid, M. B. 1993. Dietary fiber, inulin, and oligofiuctose: a review comparing their physiological effects. Crit. Rev. Food Sci. Nutr. 33, 103-148. https://doi.org/10.1080/10408399309527616
  35. Rolfe, R. D. 2002. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130, 396S-402S.
  36. SAS. 2004. SAS/STAT User's Guide: Statistics. Version 8th Ed. SAS Institute Inc., Cary, North Carolina.
  37. Scheppach, W. 1994. Effects of short chain fatty acids on gut morphology and function. Gut. Suppl. 1, 535-538.
  38. Swanson, J. C. 2008. The ethical aspects of regulating production. Poult. Sci. 87, 373-379. https://doi.org/10.3382/ps.2007-00409
  39. Tako, E., Glahn, R. P., Welch, R. M., Lei, X., Yasuda, K. and Miller, D. D. 2008. Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Brit. J. Nutr. 99, 472-480.
  40. Turnidge, J. 2004. Antibiotic use in animals-prejudices, perceptions and realities. J. Antimicrob. Chemother. 53, 26-27.
  41. Van Poppel, G. and Schaafsma, G. 1996. Cholesterol lowering by a functional yoghurt. Proc. Food Inbred. Europe 31-32.
  42. Wolever, T., Spadafora, P., Cunnane, S. and Pencharz, P. 1995. Propionate inhibits incorporation of colonic [$l,2-^{l3}C$]acetate into plasma lipids in humans. Am. J. Clin. Nutr. 61, 1241-1247.
  43. Yamashita, K., Kawai, K. and Itakura, J. 1984. Effects of fructo-oligosaccharides on blood glucose and serum lipids in diabetic subjects. Nutr. Res. 4, 961-966. https://doi.org/10.1016/S0271-5317(84)80075-5
  44. Xu, Z. R., Hu, C. H., Xia, M. S. and Zhan, X. A. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activies, intestinal microflora and morphology of male broilers. Poult. Sci. 82, 1030-1036. https://doi.org/10.1093/ps/82.6.1030
  45. Zhang, W. F., Li, D. F., Lu, W. Q. and Yi, G. F. 2003. Effects of isomalto-oilgosaccharides on broiler performance and intestinal microflora. Poult. Sci. 82, 657-663. https://doi.org/10.1093/ps/82.4.657
  46. Zsolt, Z., Jaroslav, H., Marianna, T. M., Eva, H., Kateřina, S., Ferenc, H., Milada, P., Jana, C. and Anna, H. 2011. Sensorically and antimicrobially active metabolite production of Lactobacillus strains on Jerusalem artichoke juice. J. Sci. Food Agric. 91, 672-679. https://doi.org/10.1002/jsfa.4232