DOI QR코드

DOI QR Code

Effect of Fruit Extract of Prunus mume on the Scavenging Activity of Reactive Oxygen Species and Melanin Production in B16F1 Cells

매실추출물이 활성산소종 소거효과와 B16F1 세포에서 멜라닌 생성에 미치는 영향

  • Received : 2012.04.12
  • Accepted : 2012.07.17
  • Published : 2012.07.30

Abstract

Prunus mume has been traditionally used as a medicinal food in Korea, Japan, and China. In particular, this fruit has been reported to have beneficial biological effects on gastritis and gastric ulcers. However, its action in relation to skin whitening has remained unclear. Accordingly, the effects of fruit extract of P. mume related to antioxidation and skin whitening were examined in this study. First, using the MTT assay, it was observed that fruit extract of P. mume below 0.1% has no cytotoxicity in B16-F1 cells as a result of cell viability. Second, the direct scavenging effects and the reducing power of the fruit extract of P. mume were evaluated in vitro on DPPH radicals, hydrogen peroxide, and superoxide. It exhibited high reducing power and scavenging activity on the aforementioned reactive oxygen species. Furthermore, we found that its protective effect against genomic DNA damage related to oxidative stress was increased in a dose-dependent manner. In addition, the fruit extract of P. mume had an inhibitory effect on melanin production induced by L-dopa. In addition, it reduced the expression level of NRF-2, SOD-1, and SOD-2 related to antioxidation in western blot analysis. These results suggest that fruit extract of P. mume could exert a whitening effect through inhibition of melanin production by its antioxidant effect.

매실나무(Carthamus tinctorius L.)는 한국, 일본과 중국에서 전통적으로 약효가 있는 음식으로 사용되어 왔다. 특히 과일은 위염증 및 위궤양에 도움이 되는 생물학적 효과가 있다고 보고되었다. 그러나 피부미백과 관련된 효능에 대한 연구는 이직까지 미진하다. 따라서, 본 연구에서는 항산화 및 피부미백에 대한 매실추출물의 효능이 조사되었다. MTT assay를 이용한 세포생존에 대한 결과로 매실추출물은 0.1% 이하의 농도에서 세포독성이 없는 것으로 나타났다. 다음에 매실추출물의 환원력 뿐만 아니라 DPPH radical, hydrogen peroxide 및 superoxide에 대한 직접적인 소거효과가 in vitro에서 평가되었다. 그것은 이상의 활성산소종에 대한 소거효과를 발휘하게 하는 우수한 환원력을 가지고 있다. 더욱이 산화적 스트레스와 연관된 genomic DNA 손상에 대한 보호효과가 농도에 따라 증가하는 것이 관찰 되었다. 뿐만 아니라 L-dopa에 의하여 유발되는 멜라닌 생성에 대한 억제효과를 나타내었다. 그것은 또한 Western blot 분석에서 항산화와 괸련된 NRF-2, SOD-1 및 SOD-2 발현수준을 감소시킨다는 것이 발견되었다. 이러한 결과들은 매실추출물이 항산화에 의한 멜라닌생성의 억제를 통하여 피부 미백효과를 발휘할 수 있다는 것을 암시한다.

Keywords

References

  1. Zhang, H. L., Nagatsu, A., Watanabe, T., Sakakibara, J. and Okuyama, H. 1997. Antioxidative compounds isolated from safflower (Carthamus tinctorius L.) oil cake. Chem. Pharm. Bull. 45, 1910-1914. https://doi.org/10.1248/cpb.45.1910
  2. Bandyopadhyay, U., Das, D. and Banerjee, R. K. 1999. Reactive oxygen species: Oxidative damage and pathogenesis. Curr. Sci. Bangalore 77, 658-666.
  3. Cha, H., Hwang, J., Park, J., Park, Y. and Jo, J. 1999. Changes in chemical composition of Mume (Prunus mume Sieb. et Zucc) fruits during maturation. Korean J. Postharvest Sci. Technol. 6, 481-487.
  4. Choi, C. W., Kim, S. C., Hwang, S. S., Choi, B. K., Ahn, H. J., Lee, M. Y., Park, S. H. and Kim, S. K. 2002. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 163, 1161-1168. https://doi.org/10.1016/S0168-9452(02)00332-1
  5. Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Ann. Rev. Biochem. 64, 97-112. https://doi.org/10.1146/annurev.bi.64.070195.000525
  6. Fridovich, I. 1997. Superoxide anion radical ($O{\cdot}^{-}2$), superoxide dismutases, and related matters. J. Biol. Chem. 272, 18515. https://doi.org/10.1074/jbc.272.30.18515
  7. Halliwell, B., Murcia, M. A., Chirico, S. and Aruoma, O. I. 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit. Rev. Food Sci. Nutr. 35, 7-20. https://doi.org/10.1080/10408399509527682
  8. Hamilton, R., Kalu, C., Prisk, E., Padley, F. and Pierce, H. 1997. Chemistry of free radicals in lipids. Food Chem. 60, 193-199. https://doi.org/10.1016/S0308-8146(96)00351-2
  9. Hansen, M. B., Nielsen, S. E. and Berg, K. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119, 203-210. https://doi.org/10.1016/0022-1759(89)90397-9
  10. Havsteen, B. 1983. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 32, 1141. https://doi.org/10.1016/0006-2952(83)90262-9
  11. Hill, H. Z., Li, W., Xin, P. and Mitchell, D. L. 1997. Melanin: A two edged sword? Pigment Cell Res. 10, 158-161. https://doi.org/10.1111/j.1600-0749.1997.tb00478.x
  12. Imai, J., Ide, N., Nagae, S., Moriguchi, T., Matsuura, H. and Itakura, Y. 1994. Antioxidant and radical scavanging effects of aged garlic extract and its constituents. Planta Med. 60, 417-420. https://doi.org/10.1055/s-2006-959522
  13. Larson, R. A. 1988. The antioxidants of higher plants. Phytochemistry 27, 969-978. https://doi.org/10.1016/0031-9422(88)80254-1
  14. Lodovici, M., Guglielmi, F., Meoni, M. and Dolara, P. 2001. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem. Toxicol. 39, 1205-1210. https://doi.org/10.1016/S0278-6915(01)00067-9
  15. Maniatis, T. 1989 Molecular cloning: a laboratory manual/J. Sambrook, EF Fritsch, T. Maniatis: New York: Cold Spring Harbor Laboratory Press.
  16. Meydani, S. N., Wu, D., Santos, M. S. and Hayek, M. G. 1995. Antioxidants and immune response in aged persons: overview of present evidence. Am. J. Clin. Nutr. 62, 1462S-1476S.
  17. Milne, L., Nicotera, P., Orrenius, S. and Burkitt, M. 1993. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione. Arch. Biochem. Biophys. 304, 102-109. https://doi.org/10.1006/abbi.1993.1327
  18. Nakayama, T., Niimi, T., Osawa, T. and Kawakishi, S. 1992. The protective role of polyphenols in cytotoxicity of hydrogen peroxide. Mutat. Res. 281, 77-80. https://doi.org/10.1016/0165-7992(92)90039-K
  19. Oyaizu, M. 1986. Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine. Japn. J. Nutr. 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  20. Proctor, P. Free radicals and human disease. 1992. In handbook of free radicals and antioxidants in medicine. Vol. 1, CRC Press, Boca Raton, FL.
  21. Sen, C. and Hanninen, O. 1994. Physiological antioxidants. Exerc. Oxygen Toxicity Elsevier, Amsterdam, The Netherlands 89-126.
  22. Shen, G., Jeong, W. S., Hu, R. and Kong, A. N. T. 2005. Regulation of Nrf2, NF-${\kappa}B$, and AP-1 signaling pathways by chemopreventive agents. Antioxid. Redox Signal. 7, 1648-1663. https://doi.org/10.1089/ars.2005.7.1648
  23. Shim, J. H., Park, M. W., Kim, M. R., Lim, K. T. and Park, S. T. 2002. Screening of antioxidant in Fructus mune (Prunus mune Sieb. et Zucc.) extract. Agric. Chem. Biotechnol. 45, 119-123.
  24. Stefania, B., Emanuela, C. and Mauro, P. 2003. Review: innovative technology, chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16, 101-110. https://doi.org/10.1034/j.1600-0749.2003.00029.x

Cited by

  1. Comparison of the Biological Activities of Electrodialysis-desalted Bioactive Compounds from the Halophyte Suaeda japonica vol.49, pp.2, 2016, https://doi.org/10.5657/KFAS.2016.0124
  2. A Herbological Study on the Plants of Amygdalaceae in Korea vol.31, pp.1, 2016, https://doi.org/10.6116/kjh.2016.31.1.49.
  3. Anti-stress and Anti-histamine Effects of Phragmites communis, Salicornia herbacea, and Prunus mume vol.14, pp.2, 2016, https://doi.org/10.20402/ajbc.2016.0029
  4. Radical Scavenging and Anti-Obesity Effects of 50% Ethanol Extract from Fermented Curcuma longa L. vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.281
  5. Antioxidant Activity of Major Cultivars Prunus mume in Korea vol.26, pp.3, 2018, https://doi.org/10.11625/KJOA.2018.26.3.477