DOI QR코드

DOI QR Code

A Study on the Damage of Satellite caused by Hypervelocity Impact with Orbital Debris

우주파편 초고속충돌에 의한 위성구조체의 손상에 관한 연구

  • Received : 2012.01.19
  • Accepted : 2012.06.29
  • Published : 2012.07.01

Abstract

In earth orbit, a great number of orbital debris move around in extremely high velocity, and they become serious threats to satellites. In this study, smoothed particle hydrodynamics(SPH) is used to analyze the damage of a low earth orbit satellite due to the hypervelocity impact with orbital debris. The damage of honeycomb sandwich panel(HC/SP) used for walls of a satellite is analyzed with respect to impact velocities. For the additional analysis to examine the safety of interior components of the satellite, an attached electronic box and an offset electronic box are considered. As a result of the analysis considering the orbital debris having a probability of collision more than 2% at altitude of 685km, it is shown that the HC/SP can be perforated but only small craters are formed on both the attached electronic box and the offset electronic box.

지구궤도 상에는 무수히 많은 우주파편(Orbital debris)이 존재하며 매우 높은 속도로 선회하고 있기 때문에 정상가동중인 인공위성과 충돌 시 위성구조체에 치명적인 손상을 일으킬 수 있다. 본 연구에서는 입자완화유체동역학(Smoothed particle hydrodynamics, SPH)을 이용하여 우주파편과의 초고속충돌로 인해 발생 가능한 저궤도 위성구조체의 손상분석을 수행하였다. 위성구조체의 본체 패널(Panel)로 사용되는 허니콤샌드위치패널(Honeycomb sandwich panel, HC/SP)에 대해 충돌속도에 따른 손상분석을 수행하였으며 위성구조체 내부부품의 안전성 분석을 위해 전자박스가 HC/SP에 직접 부착된 경우와 10cm 오프셋 된 경우에 대한 초고속충돌해석 및 손상분석을 수행하였다. 고도 685km의 저궤도에서 2% 정도의 충돌확률을 갖는 우주파편들을 고려할 때, HC/SP 자체에 관통이 발생하는 것으로 나타났으며 부착형 전자박스의 경우와 오프셋형 전자박스의 경우에는 전자박스에 관통이 발생하지 않고 미소 크레이터(Crater)만 발생되는 것으로 나타났다.

Keywords

References

  1. "Orbital Debris Quarterly News," NASA Orbital Debris Program Office, Vol. 15, 2011.
  2. "IADC Observation Campaigns," 43rd Session of UNCOPUOS S&T SC, pp. 4, 2006.
  3. 전석기, 이상호, "무요소법 개론," 전산구조공학 제 11권 제3호, 1998.
  4. T. Belytschko, et al., "Meshless methods: An overview and recent developments," Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 3-47, 1996. https://doi.org/10.1016/S0045-7825(96)01078-X
  5. AUTODYN Theory Manual (Revision 4.3), Century Dynamics Inc., 2005.
  6. D.E. Grady, "The Spall Strength of Condensed Matter," Journal of the Mechanics and Physics of Solids, Vol. 36, pp. 353-384, 1988. https://doi.org/10.1016/0022-5096(88)90015-4
  7. A.J. Piekutowski, "Characteristics of Debris Clouds Produced by Hypervelocity Impact of Aluminum Spheres with Thin Aluminum Plates," Int. J. Impact Engng, Vol. 14, pp. 573-586, 1993. https://doi.org/10.1016/0734-743X(93)90053-A
  8. C.J. Hayhurst, et al., "Numerical Simulation of Hypervelocity Impacts on Aluminum and Nextel/Kevlar Whipple Shields," Hypervelocity Shielding Workshop, Galveston, Texas, 8-11 March, 1998.
  9. Lee Sungsoo, Seo Songwon and Min Oakkey, "SPH Parameters for Analysis of Penetration Phenomenon at Hypervelocity Impact of Meteorite," KSME IJ, Vol. 27, pp. 1738-1747, 2003. https://doi.org/10.3795/KSME-A.2003.27.10.1738
  10. C.J. Hayhurst and R.A. Clegg, "Cylindrically Symmetric SPH Simulations of Hypervelocity Impacts on Thin Plates," Int. J. Impact Engng, Vol. 20, pp. 337-348, 1996.
  11. M. Lambert, et al., "Impact Damage on Sandwich Panels and Multi-layer Insulation," Int. J. Impact Engng, Vol. 26, pp. 369-380, 2001. https://doi.org/10.1016/S0734-743X(01)00108-7
  12. E.A. Taylor, et al., "Hypervelocity impact on spacecraft honeycomb: hydrocode simulation and damage laws," Int. J. Impact Engng, Vol. 29, pp. 691-702, 2003. https://doi.org/10.1016/j.ijimpeng.2003.10.016
  13. C. Giacomuzzo, et al., "SPH evalutaion of out-of plane peak force transmitted during a hypervelocity impact," Int. J. Impact Engng, Vol. 35, pp. 1534-1540, 2008. https://doi.org/10.1016/j.ijimpeng.2008.07.070
  14. F. Shinya, A. Yasuhiro, K. Yukihito and G. Tateo, "Comparison of debris environment models: ORDEM2000, MASTER2001 and MASTER2005," IHI Engineering Review, Vol. 40, 2007.
  15. J.C. Liou, et al., "The New NASA Orbital Debris Engineering Model ORDEM2000," NASA, 2002.

Cited by

  1. A Study on the Kinetic Energy and Dispersion Behavior of High-velocity Impact-induced Debris Using SPH Technique vol.40, pp.5, 2016, https://doi.org/10.3795/KSME-A.2016.40.5.457
  2. Study on Penetration Characteristics of Tungsten Cylindrical Penetrator vol.37, pp.9, 2013, https://doi.org/10.3795/KSME-A.2013.37.9.1083