DOI QR코드

DOI QR Code

Anti-adipogenic Effect of Undaria pinnatifida Extracts by Ethanol in 3T3-L1 Adipocytes

미역 에탄올 추출물이 지방세포 형성과정에 미치는 영향

  • Kim, Hye-Jin (Department of Biotechnology, Pukyong National University) ;
  • Kang, Chang-Han (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
  • 김혜진 (부경대학교 수산과학대학 생물공학과) ;
  • 강창한 (부경대학교 수산과학대학 생물공학과) ;
  • 김성구 (부경대학교 수산과학대학 생물공학과)
  • Received : 2012.05.28
  • Accepted : 2012.07.02
  • Published : 2012.08.30

Abstract

Undaria pinnatifada has been used as a natural diet food with few calories and as a source of iodine. Even though U. pinnatifida has been regarded as a diet food, the mechanisms of its inhibitory effects on adipocyte differentiation and the accumulation of fat in adipocytes are poorly understood. In this study, the effect and mechanism of U. pinnatifida ethanol extract on 3T3-L1 differentiation into adipocytes were investigated. The effects of U. pinnatifida ethanol extract on cell viability and the anti-adipogenic effect were investigated via MTT assay, Oil red O staining, RT-PCR, and western blot. The U. pinnatifida ethanol extract did not show toxicity up to a concentration of 50 ${\mu}g/ml$. The addition of U. pinnatifida ethanol extract decreased triglyceride contents by 40% when 50 ${\mu}g/ml$ of U. pinnatifida ethanol extract was added during 3T3-L1 differentiation and adipocyte triglyceride formation. The transcription and expression of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), leptin, and hormone-sensitive lipase (HSL) as adipocyte-specific proteins were determined by RT-PCR and western blot. The overexpression of $PPAR{\gamma}$ could accelerate adipocyte differentiation. Also, leptin was secreted for triglyceride accumulation in the adipocytes and the increase of adipocyte cell size. Thus, $PPAR{\gamma}$ and leptin were used as indicators of obesity. $PPAR{\gamma}$ and leptin were repressed by the increased addition of U. pinnatifida ethanol extract. This indicates that U. pinnatifida was effective as an anti-obesity agent by repressing the differentiation of 3T3-L1 into adipocytes and inhibiting triglyceride formation in adipocytes.

미역(Undaria pinnatifada)은 낮은 칼로리 및 요오드의 원료로써 천연체중조절식품으로 알려져 있다. 미역이 체중조절식품으로 알려져 있음에도 불구하고, 지방세포 분화 및 지방축적에 관한 저해 기작은 연구가 미비하다. 본 연구에서는 3T3-L1에서 지방세포로 분화가 일어나는 단계에서 미역에탄올추출물의 효과 및 기작을 확인하였다. 미역에탄올추출물의 독성과 지방축적저해효과는 MTT assay, Oil red O staining, RT-PCR과 western blot으로 분석하였다. 미역에탄올추출물은 50 ${\mu}g/ml$의 농도에서 독성을 띄지 않았다. 3T3-L1의 분화 및 지방세포에서 triglyceride축적과정동안 50 ${\mu}g/ml$의 미역에탄올추출물을 처리하였으며, 미역에탄올추출물은 지방세포에서 triglyceride의 축적을 40% 감소시켰다. 지방세포 특이적 단백질인 Peroxisome proliferator activated receptor ${\gamma}$ ($PPAR{\gamma}$), leptin과 Hormone sensitive lipase (HSL)의 발현은 RT-PCR과 western blot으로 확인하였다. $PPAR{\gamma}$의 과발현은 지방세포의 분화를 촉진시킨다. 또한 지방세포 크기의 증가와 세포 내 triglyceride의 함량에 따라 leptin은 세포 외로 분비된다. 그러므로 $PPAR{\gamma}$와 leptin은 비만의 지표로 사용된다. 첨가한 미역에탄올추출물의 농도가 높아질수록 $PPAR{\gamma}$와 leptin의 발현이 억제되었다. 이상의 결과를 통하여, 미역의 에탄올 추출물은 지방전구세포의 분화를 억제시키며, 지방세포 내 triglyceride의 축적을 저해하는 것으로 판단된다.

Keywords

References

  1. Cole, S. P. 1986. Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemother. Pharmacol. 17, 259-263.
  2. Frayn, K. N., Coppack, S. W., Fielding, B. A. and Humphreys, S. M. 1995. Coordinated regulation of hormone- sensitive lipase and lipoprotein lipase in human adipose tissue in vivo: implications for the control of fat storage and fat mobilization. Adv. Enzyme Regul. 35, 163-178. https://doi.org/10.1016/0065-2571(94)00011-Q
  3. Gesta, S., Tseng, Y. H. and Kahn, C. R. 2007. Developmental origin of fat: tracking obesity to its source. Cell 131, 242-256. https://doi.org/10.1016/j.cell.2007.10.004
  4. Green, H. and Kehinde, O. 1974. Sublines of mouse 3T3-L1 cells that accumulate lipid. Cell 131, 242-256
  5. Kotake, N. E., Kushiro, M., Zhang, H., Sugawara, T. and Miyashita, K. 2001. Carotenoids affect proliferation of human prostate cancer cells. J. Nutrition 131, 3301-3306.
  6. Leroy, P., Dessolin, S., Villageois, P., Moon, B. C., Friedman, J. M., Ailhaud, G. and Dani, C. 1996. Expression of ob gene in adipose cells regulation by insulin. J. Biol. Chem. 271, 2365-2368. https://doi.org/10.1074/jbc.271.5.2365
  7. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  8. Muhammad, S. Ali., Muhammad, J., Muhammad, S., Muhammad, K. P., Shaista, H. and Viqar, U. A. 2000. Metabolites of marine algae collected from karachi - coasts of arabian Sea. J. Nat. Prod. 6, 61-65.
  9. Peter, G. K. 2000. Obesity as a medical problem. Nature 404, 635-643.
  10. Robert, Z., Juliane, G. S., Guenter, H., Gabriele, S., Ruth, B. G., Monika, R., Achim, L., Georg, N., Frank, E., Albin, H. and Rudolf, Z. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383-1386. https://doi.org/10.1126/science.1100747
  11. Rosen, E. D., Walkey, C. J., Puigserver, P. and Spiegelman, B. M. 2000. Transcriptional regulation of adipogenesis. Gene Dev. 14, 1293-1307.
  12. Schoonjans, K., Staels, B. and Auwerx, J. 1996. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta. 1302, 93-109. https://doi.org/10.1016/0005-2760(96)00066-5
  13. Scott, M. G. 2004. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol Metab. 89, 2595-2600. https://doi.org/10.1210/jc.2004-0372
  14. Spiegelman, B.M. 2001. Obesity and the regulation of energy balance. Cell 104, 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
  15. Wellman, N. S. 2002. Causes and consequences of adult obesity: health, social and economic impacts in the united States. Asia Pac. J. Clin. Nutr. 11, S705-S709. https://doi.org/10.1046/j.1440-6047.11.s8.6.x
  16. Wyatt, S. B., Winters, K. P. and Dubbert, P. M. 2006. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Am. J. Med. Sci. 331, 166-174. https://doi.org/10.1097/00000441-200604000-00002

Cited by

  1. Ethanol extract of Plantago asiatica L. controls intracellular fat accumulation and lipid metabolism in 3T3-L1 Adipocytes vol.29, pp.4, 2014, https://doi.org/10.6116/kjh.2014.29.4.77
  2. Antiadipogenic Effects of Salvia plebeia R. Br. Extracts by Extraction Conditions in 3T3-L1 Preadipocytes vol.23, pp.3, 2015, https://doi.org/10.7783/KJMCS.2015.23.3.245
  3. Effects of Myelophycus Simplex Papenfuss Methanol Extract on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes vol.25, pp.1, 2015, https://doi.org/10.5352/JLS.2015.25.1.62
  4. Anti-obesity effect of Polygala tenuifolia vol.21, pp.1, 2014, https://doi.org/10.11002/kjfp.2014.21.1.97
  5. Antiobesity Activity of Chrysanthemum zawadskii Methanol Extract vol.25, pp.3, 2015, https://doi.org/10.5352/JLS.2015.25.3.299
  6. Antiadipogenic Effect of Vitis amurensis Root Methanol Extract and Its Solvent Fractions in 3T3-L1 Preadipocytes vol.23, pp.1, 2013, https://doi.org/10.5352/JLS.2013.23.1.69
  7. Anti-obesity Activities of <i>Cirsium setidens</i> Nakai Ethanolic Extract vol.33, pp.5, 2018, https://doi.org/10.13103/JFHS.2018.33.5.389