DOI QR코드

DOI QR Code

The Regulation of Chemerin and CMKLR1 Genes Expression by TNF-α, Adiponectin, and Chemerin Analog in Bovine Differentiated Adipocytes

  • Suzuki, Y. (Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Hong, Y.H. (Laboratory of Animal Production, Faculty of Life and Environmental Science, Shimane University) ;
  • Song, S.H. (Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Ardiyanti, A. (Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Kato, D. (Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • So, K.H. (Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Katoh, K. (Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Roh, Sang-Gun (Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University)
  • Received : 2012.02.13
  • Accepted : 2012.03.23
  • Published : 2012.09.01

Abstract

Adipokines, adipocyte-derived protein, have important roles in various kinds of physiology including energy homeostasis. Chemerin, one of adipocyte-derived adipokines, is highly expressed in differentiated adipocytes and is known to induce macrophage chemotaxis and glucose intolerance. The objective of the present study was to investigate the changes of chemerin and the chemokine-like-receptor 1 (CMKLR1) gene expression levels during differentiation of the bovine adipocyte and in differentiated adipocytes treated with tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), adiponectin, leptin, and chemerin (peptide analog). The expression levels of the chemerin gene increased at d 6 and 12 of the differentiation period accompanied by increased cytoplasm lipid droplets. From d 6 onward, peroxisome proliferator-activated receptor-${\gamma}2$ (PPAR-${\gamma}2$) gene expression levels were significantly higher than that of d 0 and 3. In contrast, CMKLR1 expression levels decreased at the end of the differentiation period. In fully differentiated adipocytes (i.e. at d 12), the treatment of TNF-${\alpha}$ and adiponectin upregulated both chemerin and CMKLR1 gene expression levels, although leptin did not show such effects. Moreover, chemerin analog treatment was shown to upregulate chemerin gene expression levels regardless of doses. These results suggest that the expression of chemerin in bovine adipocyte might be regulated by chemerin itself and other adipokines, which indicates its possible role in modulating the adipokine secretions in adipose tissues.

Keywords

References

  1. Bauer, S., J. Wanninger, S. Schmidhofer, J. Weigert, M. Neumeier, C. Dorn, C. Hellerbrand, N. Zimara, A. Schaffler, C. Aslanidis, and C. Buechler. 2011. Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology 152:26-35. https://doi.org/10.1210/en.2010-1157
  2. Bionaz, M. and J. J. Loor. 2008. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 138:1019-1024.
  3. Bozaoglu, K., K. Bolton, J. McMillan, P. Zimmet, J. Jowett, G. Collier, K. Walder and D. Segal. 2007. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148:4687-4694. https://doi.org/10.1210/en.2007-0175
  4. Combs, T. P., U. B. Pajvani, A. H. Berg, Y. Lin, L. A. Jelicks, M. Laplante, A. R. Nawrocki, M. W. Rajala, A. F. Parlow, L. Cheeseboro, Y. Y. Ding, R. G. Russell, D. Lindemann, A. Hartley, G. R. Baker, S. Obici, Y. Deshaies, M. Ludgate, L. Rossetti and P. E. Scherer. 2004. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145:367-383. https://doi.org/10.1210/en.2003-1068
  5. Fajas, L., J. C. Fruchart and J. Auwerx. 1998. Transcriptional control of adipogenesis. Curr. Opin. Cell Biol. 10:165-173. https://doi.org/10.1016/S0955-0674(98)80138-5
  6. Friedman, M. I. and I. Ramirez. 1994. Food intake in diabetic rats: relationship to metabolic effects of insulin treatment. Physiol. Behav. 56:373-378. https://doi.org/10.1016/0031-9384(94)90209-7
  7. Goralski, K. B., T. C. McCarthy, E. A. Hanniman, B. A. Zabel, E. C. Butcher, S. D. Parlee, S. Muruganandan and C. J. Sinal. 2007. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282:28175-28188. https://doi.org/10.1074/jbc.M700793200
  8. Guilherme, A., J. V. Virbasius, V. Puri and M. P. Czech. 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9:367-377. https://doi.org/10.1038/nrm2391
  9. Kralisch, S., S. Weise, G. Sommer, J. Lipfert, U. Lossner, M. Bluher, M. Stumvoll and M. Fasshauer. 2009. Interleukin- 1beta induces the novel adipokine chemerin in adipocytes in vitro. Regul. Pept. 154:102-106. https://doi.org/10.1016/j.regpep.2009.02.010
  10. Kukla, M., K. Zwirska-Korczala, M. Hartleb, M. Waluga, A. Chwist, M. Kajor, M. Ciupinska-Kajor, A. Berdowska, E. Wozniak-Grygiel and R. Buldak. 2010. Serum chemerin and vaspin in non-alcoholic fatty liver disease. Scand. J. Gastroenterol. 45:235-242. https://doi.org/10.3109/00365520903443852
  11. Laliotis, G. P., I. Bizelis and E. Rogdakis. 2010. Comparative approach of the de novo fatty acid synthesis (Lipogenesis) between ruminant and non ruminant mammalian species: From biochemical level to the main regulatory lipogenic genes. Curr. Genomics 11:168-183. https://doi.org/10.2174/138920210791110960
  12. Le Lay, S., P. Ferre and I. Dugail. 2004. Adipocyte cholesterol balance in obesity. Biochem. Soc. Trans. 32:103-106. https://doi.org/10.1042/BST0320103
  13. Lefterova, M. I. and M. A. Lazar. 2009. New developments in adipogenesis. Trends Endocrinol. Metab. 20:107-114. https://doi.org/10.1016/j.tem.2008.11.005
  14. Lehrke, M., A. Becker, M. Greif, R. Stark, R. P. Laubender, F. von Ziegler, C. Lebherz, J. Tittus, M. Reiser, C. Becker, B. Goke, A. W. Leber, K. G. Parhofer and U. C. Broedl. 2009. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur. J. Endocrinol. 161:339-344. https://doi.org/10.1530/EJE-09-0380
  15. Muruganandan, S., S. D. Parlee, J. L. Rourke, M. C. Ernst, K. B. Goralski and C. J. Sinal. 2011. Chemerin, a novel peroxisome proliferator-activated receptor $\gamma$(PPAR$\gamma$) target ene that promotes mesenchymal stem cell adipogenesis. J. Biol. Chem. 286:23982-23995. https://doi.org/10.1074/jbc.M111.220491
  16. Muruganandan, S., A. A. Roman and C. J. Sinal. 2010. Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J. Bone Miner. Res. 25:222-234. https://doi.org/10.1359/jbmr.091106
  17. Mussig, K., H. Staiger, F. Machicao, C. Thamer, J. Machann, F. Schick, C. D. Claussen, N. Stefan, A. Fritsche and H. U. Haring. 2009. RARRES2, encoding the novel adipokine chemerin, is a genetic determinant of disproportionate regional body fat distribution: a comparative magnetic resonance imaging study. Metab. Clin. Exp. 58:519-524. https://doi.org/10.1016/j.metabol.2008.11.011
  18. Ohtani, Y., T. Yonezawa, S. H. Song, T. Takahashi, A. Ardiyanti, K. Sato, A. Hagino, S. G. Roh and K. Katoh. 2011. Gene expression and hormonal regulation of adiponectin and its receptors in bovine mammary gland and mammary epithelial cells. Anim. Sci. J. 82:99-106. https://doi.org/10.1111/j.1740-0929.2010.00805.x
  19. Roh, S. G., D. Hishikawa, Y.-H. Hong and S. Sasaki. 2006. Control of adipogenesis in ruminants. Anim. Sci. J. 77:472-477. https://doi.org/10.1111/j.1740-0929.2006.00374.x
  20. Roh, S. G., S. H. Song, K. C. Choi, K. Katoh, V. Wittamer, M. Parmentier and S. Sasaki. 2007. Chemerin-a new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 362:1013-1018. https://doi.org/10.1016/j.bbrc.2007.08.104
  21. Sell, H., J. Laurencikiene, A. Taube, K. Eckardt, A. Cramer, A. Horrighs, P. Arner and J. Eckel. 2009. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 58:2731-2740. https://doi.org/10.2337/db09-0277
  22. Shimamura, K., M. Matsuda, Y. Miyamoto, R. Yoshimoto, T. Seo and S. Tokita. 2009. Identification of a stable chemerin analog with potent activity toward ChemR23. Peptides 30:1529-1538. https://doi.org/10.1016/j.peptides.2009.05.030
  23. Song, S. H., K. Fukui, K. Nakajima, T. Kozakai, S. Sasaki, S. G. Roh and K. Katoh. 2010. Cloning, expression analysis, and regulatory mechanisms of bovine chemerin and chemerin receptor. Domest. Anim. Endocrinol. 39:97-105. https://doi.org/10.1016/j.domaniend.2010.02.007
  24. Suganami, T. and Y. Ogawa. 2010. Adipose tissue macrophages: their role in adipose tissue remodeling. J. Leukoc. Biol. 88:33-39. https://doi.org/10.1189/jlb.0210072
  25. Suzuki, Y., S. H. Song, K. Sato, K. H. So, A. Ardiyanti, S. Kitayama, Y. H. Hong, S. D. Lee, K. C. Choi, A. Hagino, K. Katoh and S. G. Roh. 2012. Chemerin analog regulates energy metabolism in sheep. Anim. Sci. J. 83:263-267. https://doi.org/10.1111/j.1740-0929.2011.01002.x
  26. White, U. A. and J. M. Stephens. 2010. Transcriptional factors that promote formation of white adipose tissue. Mol. Cell. Endocrinol. 318:10-14. https://doi.org/10.1016/j.mce.2009.08.023
  27. Wittamer, V., J. D. Franssen, M. Vulcano, J. F. Mirjolet, E. Le Poul, I. Migeotte, S. Brezillon, R. Tyldesley, C. Blanpain, M. Detheux, A. Mantovani, S. Sozzani, G. Vassart, M. Parmentier and D. Communi. 2003. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198:977-985. https://doi.org/10.1084/jem.20030382
  28. Yamauchi, T., J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B. B. Kahn and T. Kadowaki. 2002. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8:1288-1295. https://doi.org/10.1038/nm788

Cited by

  1. The Regulation of Oxytocin Receptor Gene Expression during Adipogenesis vol.27, pp.5, 2015, https://doi.org/10.1111/jne.12268
  2. Single Nucleotide Polymorphism in the Coding Region of Bovine Chemerin Gene and Their Associations with Carcass Traits in Japanese Black Cattle vol.28, pp.8, 2015, https://doi.org/10.5713/ajas.14.0560
  3. - Invited Review - Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants vol.29, pp.1, 2015, https://doi.org/10.5713/ajas.16.0001R
  4. La chémérine vol.31, pp.5, 2015, https://doi.org/10.1051/medsci/20153105010
  5. Effects of different roughage sources and feeding levels on adipogenesis of ovine adipocytes vol.86, pp.11, 2015, https://doi.org/10.1111/asj.12380
  6. GB107 inhibits fat accumulation in cultured 3T3-L1 adipocytes vol.9, pp.4, 2015, https://doi.org/10.4162/nrp.2015.9.4.439
  7. Relative Expression and Chemerin Serum Levels in Obesity with Dysmetabolic Phenotype and Insulin Resistance vol.2016, pp.1466-1861, 2016, https://doi.org/10.1155/2016/3085390
  8. Possible involvement of the RARRES2/CMKLR1-system in metabolic and reproductive parameters in Holstein dairy cows vol.17, pp.1, 2019, https://doi.org/10.1186/s12958-019-0467-x
  9. Downregulated angiopoietin-like protein 8 production at calving related to changes in lipid metabolism in dairy cows vol.96, pp.7, 2012, https://doi.org/10.1093/jas/sky162
  10. Chemerin Isoforms and Activity in Obesity vol.20, pp.5, 2012, https://doi.org/10.3390/ijms20051128
  11. n-3 polyunsaturated fatty acids regulate chemerin in cultured adipocytes: role of GPR120 and derived lipid mediators vol.11, pp.10, 2012, https://doi.org/10.1039/d0fo01445a
  12. Long noncoding RNA LYPLAL1-AS1 regulates adipogenic differentiation of human mesenchymal stem cells by targeting desmoplakin and inhibiting the Wnt/β-catenin pathway vol.7, pp.1, 2021, https://doi.org/10.1038/s41420-021-00500-5
  13. Chemerin Regulates Epithelial Barrier Function of Mammary Glands in Dairy Cows vol.11, pp.11, 2012, https://doi.org/10.3390/ani11113194