DOI QR코드

DOI QR Code

Synthesis of SnO2 Nanotubes Via Electrospinning Process and Their Application to Lithium Ion Battery Anodes

전기방사법을 통한 주석산화물 나노튜브의 합성 및 리튬이차전지 음극으로의 응용

  • Lee, Young-In (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University)
  • 이영인 (한양대학교 융합화학공학과) ;
  • 좌용호 (한양대학교 융합화학공학과)
  • Received : 2012.06.12
  • Accepted : 2012.08.01
  • Published : 2012.08.28

Abstract

$SnO_2$ nanotubes were successfully synthesized using an electrospinning technique followed by calcination in air. The nanotubes were the single phase nature of $SnO_2$ and consisted of approximately 14 nm nanocrystals. SEM and TEM characterizations demonstrated that uniform hollow fibers with an average outer diameter of around 124 nm and wall thickness of around 25 nm were successfully obtained. As anode materials for lithium ion batteries, the $SnO_2$ nanotubes exhibited excellent cyclability and reversible capacity of $580mAhg^{-1}$ up to 25 cycles at $100mAg^{-1}$ as compared to $SnO_2$ nanoparticles with a capacity of ${\sim}200mAhg^{-1}$. Such excellent performance of the $SnO_2$ nanotube was related to the one-dimensional hollow structure which acted as a buffer zone during the volume contraction and expansion of Sn.

Keywords

References

  1. A. Yoshino: Angew. Chem. Int. Ed., 43 (2012) 5798.
  2. H. Kim and J. Cho: J. Mater. Chem., 18 (2008) 771. https://doi.org/10.1039/b714904b
  3. S. Han, B. Jang, T. Kim, S. M. Oh and T. Hyeon: Adv. Mater., 15 (2005) 1845.
  4. M.-S. Park, G.-X. Wang, Y.-M. Kang, D. Wexler, S.-X. Dou and H.-K. Liu: Angew. Chem. Int. Ed., 119 (2007) 764. https://doi.org/10.1002/ange.200603309
  5. I. A. Courtney and J. R. Dahn: J. Electrochem. Soc., 144 (1997) 2045. https://doi.org/10.1149/1.1837740
  6. D. G. Kim, H. Kim, H.-J. Sohn and T. Kang: J. Power Sources, 104 (2002) 221. https://doi.org/10.1016/S0378-7753(01)00918-1
  7. J.-H. Ahn, G. X. Wang, J. Yao, H. K. Liu and S. X. Dou: J. Power Sources, 119 (2003) 45. https://doi.org/10.1016/S0378-7753(03)00122-8
  8. Y. Wang, J. Y. Lee and H. C. Zeng: Chem. Mater., 17 (2005) 3899. https://doi.org/10.1021/cm050724f
  9. W.-S. Kim, B.-S. Lee, D.-H. Kim, H.-C. Kim, W.-R. Yu and S.-H. Hong: Nanotechnology, 21 (2010) 245605. https://doi.org/10.1088/0957-4484/21/24/245605
  10. M. Lai, J.-H. Lim, S. Mubeen, Y. Rheem, A. Mulchandani, M. A. Deshusses and N. V. Myung: Nanotechnology, 20 (2009) 185602. https://doi.org/10.1088/0957-4484/20/18/185602
  11. W. J. Lee, M.-H. Park, Y. Wang, J. Y. Leed and J. Cho: Chem. Commun., 46 (2010) 622. https://doi.org/10.1039/b916483a
  12. Y. Dai, W. Liu, E. Formo, Y. Sunc, and Y. Xia: Polym. Adv. Technol., 22 (2011) 326 https://doi.org/10.1002/pat.1839
  13. A. Greiner and J. H. Wendorff: Angew. Chem. Int. Ed., 46 (2007) 5670. https://doi.org/10.1002/anie.200604646
  14. D. Li and Y. Xia: Adv. Mater., 16 (2004) 1151. https://doi.org/10.1002/adma.200400719
  15. L. Li, X. Yin, S. Liu, Y. Wang, L. Chen and T. Wang: Electrochem. Commun., 12 (2010) 1383. https://doi.org/10.1016/j.elecom.2010.07.026
  16. S. J. Azhari and M. A. Diab: Polym. Degrad. Stab., 60 (1998) 253. https://doi.org/10.1016/S0141-3910(97)00073-6
  17. B. D. Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Pub. Co., Canada (1978).
  18. W.-S. Chen, D.-A. Huang, H.-C. Chen, T.-Y. Shie, C.-H. Hsieh, J.-D. Liao and C. Kuo: Cryst. Growth Des., 9 (2009) 4071.
  19. C. Eid, D. Luneau, V. Salles, R. Asmar, Y. Monteil, A. Khoury and A. Brioude, J. Phys. Chem. C, 115 (2011) 17643. https://doi.org/10.1021/jp203426j

Cited by

  1. Improvement of Triboelectric Efficiency using SnO2 Friction Layer for Triboelectric Generator vol.22, pp.5, 2015, https://doi.org/10.4150/KPMI.2015.22.5.321
  2. A study on the synthesis of tin oxide crystalline by the liquid reduction precipitation method and hydrothermal process vol.26, pp.3, 2016, https://doi.org/10.6111/JKCGCT.2016.26.3.095