DOI QR코드

DOI QR Code

Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm

신경망 이론을 이용한 염소이온 겉보기 확산계수 추정 및 이를 이용한 염화물 해석

  • 이학수 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2012.04.24
  • Accepted : 2012.06.18
  • Published : 2012.08.31

Abstract

Evaluation of chloride penetration is very important, because induced chloride ion causes corrosion in embedded steel. Diffusion coefficient obtained from rapid chloride penetration test is currently used, however this method cannot provide a correct prediction of chloride content since it shows only ion migration velocity in electrical field. Apparent diffusion coefficient of chloride ion based on simple Fick's Law can provide a total chloride penetration magnitude to engineers. This study proposes an analysis technique to predict chloride penetration using apparent diffusion coefficient of chloride ion from neural network (NN) algorithm and time-dependent diffusion phenomena. For this work, thirty mix proportions with the related diffusion coefficients are studied. The components of mix proportions such as w/b ratio, unit content of cement, slag, fly ash, silica fume, and fine/coarse aggregate are selected as neurons, then learning for apparent diffusion coefficient is trained. Considering time-dependent diffusion coefficient based on Fick's Law, the technique for chloride penetration analysis is proposed. The applicability of the technique is verified through test results from short, long term submerged test, and field investigations. The proposed technique can be improved through NN learning-training based on the acquisition of various mix proportions and the related diffusion coefficients of chloride ion.

염화물 이온은 콘크리트 내부로 유입되어 철근부식을 야기하므로 염화물 침투 평가는 매우 중요하다. 전기영동실험을 통한 촉진확산계수가 현실적으로 많이 쓰이고 있지만, 이는 자유염화물 이온에 대한 전기장 내의 이온속도를 나타낼 뿐이므로 염화물량에 대한 명확한 해를 제공하지 못한다. 겉보기 확산계수는 단순한 Fick의 이론을 배경으로 엔지니어에게 전염화물의 확산을 명확하게 제공할 수가 있다. 이 연구는 인공신경망이론을 이용하여 최적의 확산계수를 도출하고 시간의존성 확산계수를 이용하여 염화물 침투를 평가할 수 있는 기법을 제시하는 것이다. 이를 위해 기존의 연구에서 30개의 배합 및 염소이온 겉보기 염화물 확산계수를 인용하였으며, 배합인자(물결합재비, 단위시멘트량, 슬래그, 플라이애쉬, 실리카퓸, 단위 잔골재 및 굵은 골재)를 뉴런으로 선택하여 확산계수에 대한 학습을 훈련하였다. 또한 시간의존성 확산계수를 고려하여 단순한 Fick 법칙으로 염화물 침투를 평가할 수 있는 기법을 제시하였다. 장기침지실험 및 실태조사 결과를 이용하여 제안된 기법의 결과와 비교를 수행하였으며, 그 적용성을 평가하였다. 이 기법은 다양한 배합 및 관련 확산계수의 입수 및 학습을 통하여 더욱 합리적인 기법으로 발전할 수 있다.

Keywords

References

  1. Broomfield, J. P., "Corrosion of Steel in Concrete: Understanding," Investigation and Repair, London, E&FN, 1997, pp. 1-15.
  2. RILEM, "Durability Design of Concrete Structures," Report of RILEM Technical Committee 130-CSL, E&FN, 1994, pp. 28-52.
  3. Thomas, M. D. A. and Bentz, E. C., Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides, Life365 Manual, SFA, 2002, pp. 12-56.
  4. CEB-FIP, Model Code for Service Life Design, The International Federation for Structural Concrete (fib), Task Group 5.6, 2006, pp. 16-33.
  5. Song, H. W., Pack, S. W., Lee, C. H., and Kwon, S. J., "Service Life Prediction of Concrete Structures under Marine Environment Considering Coupled Deterioration," Journal of Restoration of Building and Monument, Vol. 12, No. 1, 2006, pp. 265-284.
  6. Maekawa, K., Ishida, T., and Kishi, T., "Multi-Scale Modeling of Concrete Performance," Journal of Advanced Concrete Technology, Vol. 1, No. 2, 2003, pp. 91-126. https://doi.org/10.3151/jact.1.91
  7. 송하원, 권성준, 변근주, 박찬규, "혼화재를 사용한 고성능 콘크리트의 배합특성을 고려한 염화물 확산 해석기법에 관한 연구," 대한토목학회 논문집, 25권, 1A호, 2005, pp. 213-223.
  8. Kwon, S. J., Na, U. J., Park, S. S., and Jung, S. H., "Service Life Prediction of Concrete Wharves with Early-Aged Crack: Probabilistic Approach for Chloride Diffusion," Structural Safety, Vol. 31, No. 1, 2009, pp. 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  9. Park, S. S., Kwon, S. J., Jung, S. H., and Lee, S. W., "Modeling of Water Permeability in Early Aged Concrete with Cracks Based on Micro Pore Structure," Construction and Building Materials, Vol. 27, No. 1, 2012, pp. 597-604. https://doi.org/10.1016/j.conbuildmat.2011.07.002
  10. Park, S. S., Kwon, S. J., and Jung, S. H., "Analysis Technique for Chloride Penetration in Cracked Concrete Using Equivalent Diffusion and Permeation," Construction and Building Materials, Vol. 29, No. 2, 2012, pp. 183-192. https://doi.org/10.1016/j.conbuildmat.2011.09.019
  11. Tang, L., "Electrically Accelerated Methods for Determining Chloride Diffusivity in Concrete-Current Development," Magazine of Concrete Research, Vol. 48, No. 176, 1996, pp. 173-179. https://doi.org/10.1680/macr.1996.48.176.173
  12. NORDTEST, Chloride Migration Coefficient from Non- Steady-State Migration Experiments, NT BUILD 492, 1999, pp. 1-11.
  13. Maekawa, K., Ishida, T., and Kishi, T., Multi-Scale Modeling of Structural Concrete, Tylor & Francis, London and Newyork, 1st Ed., 2009, pp. 291-352.
  14. Thomas, M. D. A. and Bamforth, P. B., "Modeling Chloride Diffusion in Concrete: Effect of Fly Ash and Slag," Cement and Concrete Research, Vol. 29, No. 4, 1999, pp. 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  15. 양승일, 윤영수, 이승훈, 김규동, "신경망을 이용한 고성능 콘크리트의 배합설계," 한국콘크리트학회 봄 학술대회, 14권, 1호, 2002, pp. 545-550.
  16. 오주원, 이종원, 이인원, "콘크리트 배합설계에 있어서 신경망의 이용," 콘크리트 학회지, 9권, 2호, 1997, pp. 145-151.
  17. Wang, J. Z., Ni, H. G., and He, J. Y., "The Application of Automatic Acquisition of Knowledge to Mix Design of Concrete," Cement and Concrete Research, Vol. 29, No. 12, 1999, pp. 1875-1880. https://doi.org/10.1016/S0008-8846(99)00152-0
  18. Yeh, I. C., "Modeling of Strength of High-Performance Concrete Using Artificial Neural Networks," Cement and Concrete Research, Vol. 28, No. 12, 1988, pp. 1797-1808.
  19. Stegemann, J. A. and Buenfeld, N. R., "Prediction of Unconfined Compressive Strength of Cement Paste with Pure Metal Compound Additions," Cement and Concrete Research, Vol. 32, No. 6, 2002, pp. 903-913. https://doi.org/10.1016/S0008-8846(02)00722-6
  20. Park, K. B., Noguchi, T., and Plawsky, J., "Modeling of Hydration Reactions Using Neural Networks to Predict the Average Properties of Cement Paste," Cement and Concrete Research, Vol. 35, No. 9, 2005, pp. 1676-1684. https://doi.org/10.1016/j.cemconres.2004.08.004
  21. Song, H. W. and Kwon, S. J., "Evaluation of Chloride Penetration in High Performance Concrete Using Neural Network Algorithm and Micro Pore Structure," Cement and Concrete Research, Vol. 39, No. 9, 2009, pp. 814-824. https://doi.org/10.1016/j.cemconres.2009.05.013
  22. 권성준, 송하원, 변근주, 박찬규, "신경망 이론과 마이크로 모델링을 통한 혼화재를 사용한 콘크리트의 염화물 침투해석," 대한토목학회 논문집, 27권, 1A호, 2007, pp. 117-129.
  23. 권성준, 송하원, 변근주, "인공신경망을 통한 확산계수의 도출과 공극구조변화를 고려한 콘크리트 탄산화 해석," 대한토목학회 논문집, 27권, 1A호, 2007, pp. 107-116.
  24. 삼성건설 기술 연구소, 고내구성 콘크리트의 염소이온 확산특성 평가, 2003, pp. 17-68
  25. McCulloch, W. and Pitt, W., "A Logical Calaulus of the Ideas Immanent," Bulletin of Mathematical Biophysics 5, 1943, pp. 115-133. https://doi.org/10.1007/BF02478259
  26. Kwon, S. J. and Song, H. W., "Analysis of Carbonation Behavior in Concrete Using Neural Network Algorithm and Carbonation Modeling," Cement and Concrete Research, Vol. 40, No. 1, 2010, pp. 119-127. https://doi.org/10.1016/j.cemconres.2009.08.022
  27. Demuth, H. and Beagle, M., Neural Network Toolbox for Use with MATLAB, ver. 4, The MathWorks, 2002, pp. 21-85.
  28. Jang, S. Y., "Modeling of Chloride Transport and Carbonation in Concrete and Prediction of Service Life of Concrete Structures Considering Corrosion of Steel Reinforcement," Ph. D. Dissertation, Dept. of Civil Engineering, Seoul National University, Korea, 2003, pp. 32-48.
  29. Poulsen, E., On a Model of Chloride Ingress into Concrete, Nordic Miniseminar, Chloride Transport, Building Materials, Chalmers University of Technology, Gothenburg, 1993, pp. 1-8.
  30. 한국레미콘 공업협회, 콘크리트의 배합설계, 2005, pp. 319-330.

Cited by

  1. Evaluation of Chloride Penetration in Concrete with Ground Granulated Blast Furnace Slag considering Fineness and Replacement Ratio vol.1, pp.1, 2013, https://doi.org/10.14190/JRCR.2013.1.1.026
  2. Analysis Technique for Chloride Penetration in High Performance Concrete Behavior Considering Time-Dependent Accelerated Chloride Diffusivity vol.25, pp.2, 2013, https://doi.org/10.4334/JKCI.2013.25.2.145
  3. Experimental Study on the Relationship between Time-Dependent Chloride Diffusion Coefficient and Compressive Strength vol.24, pp.6, 2012, https://doi.org/10.4334/JKCI.2012.24.6.715