DOI QR코드

DOI QR Code

Compression Test for Prefabricated Composite Columns Using High-Strength Steel Angles

고강도 앵글을 적용한 선조립 합성기둥의 압축 실험

  • Received : 2012.03.15
  • Accepted : 2012.08.03
  • Published : 2012.08.27

Abstract

In this study, prefabricated composite columns using high-strength angles (PSRC composite column) was studied. Concentric axial loading tests were performed for 2/3 scale PSRC specimens and an conventional SRC specimen with H-steel at the center of the cross-section. The test parameters were the steel ratio of angles and the spacing of lateral re-bars. The test results showed that by placing the angles at the corners of the cross-section for confinement with provided for the core concrete, the PSRC column specimens exhibited greater load-carrying capacity and deformation capacity than those of the conventional SRC column. The axial load-carrying capacity of the PSRC columns was greater than the prediction by KBC 2009. Using existing stress-strain relationship of confined concrete, the axial load-deformation relationship of the specimens were predicted. The numerical predictions correlated well with the test results in terms of initial stiffness, load-carrying capacity, and post-peak strength- and stiffness-degradations.

본 연구에서는 고강도 앵글을 사용한 선조립 합성기둥(PSRC 합성기둥)을 연구하였다. 2/3 축소모델의 PSRC 실험체 및 단면 중앙부에 H형강을 매입한 일반 SRC 실험체를 제작하여 중심압축실험을 수행하였다. 강재비와 횡철근 간격을 실험 변수로 고려하였다. 실험결과 단면 코너부 앵글에 의한 콘크리트 구속효과로 인하여 PSRC 합성기둥 실험체는 일반 SRC 합성기둥과 비교하여 하중 재하능력 및 변형능력이 우수한 것으로 나타났다. 또한 KBC 2009 설계기준에 의한 공칭압축강도보다 높은 하중저항능력을 나타냈다. 기존의 횡보강 콘크리트 재료모델을 적용하여 단면해석을 수행한 결과, 초기강성, 최대강도, 최대강도 이후의 강도 및 강성 저하 등에서 실험 및 해석결과가 비교적 잘 일치하는 것으로 나타났다.

Keywords

References

  1. 김보람, 강성덕, 김형근, 김명한, 김상대(2008) 강재 영구거푸집을 사용한 yLRC 합성기둥의 내화성능 연구, 한국강구조학회논문집, 한국강구조학회, 제20권, 제3호, pp.365-375
  2. 김형근, 김명한, 조남규, 김상섭, 김상대 (2009) yLRC 합성기둥의 압축강도에 관한 실험 연구, 한국강구조학회논문집, 한국강구조학회, 제21권, 제5호, pp.545-552.
  3. 대한건축학회(2010) 건축구조기준 및 해석 (KBC 2009), 기문당.
  4. AISC 360 (2010) Specification for Structural Steel Building (ANSI/AISC 360-10), Chicago.
  5. AWS D1 Committee (2010) Structural Welding Code Steel, American Welding Society.
  6. Hoshikuma, J., Kawashima, K., Nagaya, K., and Taylor, A. W. (1997) Stress-Strain Model for Confined Reinforced Concrete in Bridge Piers, Journal of Structural Engineering, ASCE, Vol. 123, No. 5, pp.624-633. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624)
  7. Kent, D.C. and Park, R. (1971) Flexural Members with Confined Concrete, Journal of Structural Division, ASCE, Vol. 97, ST7, pp.1969-1990
  8. Mander, J.B., Priestley M.J.N., and Park, R. (1988) Theoretical Stress-Strain Model for Confined Concrete, Journal of Structural Engineering, ASCE, Vol. 114, No. 8, pp.1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  9. Morino, S. (1997) Recent Developments in Hybrid Structures in Japan-Research, Design and Construction Engineering Structures, Elsevier, Vol. 20, No. 4, pp.336-346.
  10. Saatcioglu, M. and Razvi, S.R. (1992) Strength and Ductility of Confined Concrete, Journal of Structural Engineering, ASCE, Vol. 118, No. 6, pp.1590-1607. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1590)

Cited by

  1. Cyclic Loading Tests for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar vol.25, pp.6, 2013, https://doi.org/10.7781/kjoss.2013.25.6.635
  2. Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar vol.24, pp.5, 2012, https://doi.org/10.7781/kjoss.2012.24.5.535
  3. Cyclic Loading Test for TSC Beam - PSRC Column Connections vol.25, pp.6, 2013, https://doi.org/10.7781/kjoss.2013.25.6.601
  4. Cyclic Loading Test for Beam-Column Connections of Concrete-Filled U-Shaped Steel Beams and Concrete-Encased Steel Angle Columns vol.141, pp.11, 2015, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001242
  5. Eccentric Axial Load Test for High-Strength Composite Columns of Various Sectional Configurations vol.143, pp.8, 2017, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001803
  6. Internal Confining Stress of Internally Confined Hollow Columns under Compressive Load vol.25, pp.3, 2013, https://doi.org/10.7781/kjoss.2013.25.3.243
  7. Construction Application of a Newly Developed Form-Latticed Prefabricated Steel Reinforced Concrete Column vol.14, pp.5, 2014, https://doi.org/10.5345/JKIBC.2014.14.5.487
  8. Experimental Evaluation on Seismic Performance of Filled Composite Beam - to - Forming Angle Composite Column Connections vol.20, pp.1, 2016, https://doi.org/10.5000/EESK.2016.20.1.071
  9. Behavior and Performance Evaluation of Bolted End-Plate Splice of Angles Used in Encased Composite Columns vol.30, pp.4, 2018, https://doi.org/10.7781/kjoss.2018.30.4.225
  10. 볼트접합 앵글을 사용한 합성기둥의 중심축 압축실험 vol.29, pp.2, 2012, https://doi.org/10.7781/kjoss.2017.29.2.147
  11. 볼트접합 앵글을 사용한 PSRC 합성기둥의 편심 압축실험 vol.29, pp.3, 2017, https://doi.org/10.7781/kjoss.2017.29.3.249
  12. Axial Compression Behavior of Concrete-Encased Steel Angle Columns Using High-Strength Steel vol.31, pp.6, 2012, https://doi.org/10.7781/kjoss.2019.31.6.381
  13. Evaluation of Eccentric Axial Load Test of Concrete Filled Tube Columns According to Factor of Thin-Walled Section vol.32, pp.2, 2020, https://doi.org/10.7781/kjoss.2020.32.2.085