DOI QR코드

DOI QR Code

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data

스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구

  • Son, Woo-Hyun (Department of Energy Systems Engineering, Seoul National University) ;
  • Pyun, Suk-Joon (Department of Energy Resources Engineering, Inha University) ;
  • Jang, Dong-Hyuk (Department of Energy Resources Engineering, Inha University) ;
  • Park, Yun-Hui (Department of Energy Resources Engineering, Inha University)
  • 손우현 (서울대학교 에너지시스템공학부) ;
  • 편석준 (인하대학교 에너지자원공학과) ;
  • 장동혁 (인하대학교 에너지자원공학과) ;
  • 박윤희 (인하대학교 에너지자원공학과)
  • Received : 2012.06.19
  • Accepted : 2012.07.13
  • Published : 2012.08.31

Abstract

The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

동시 송신원 전파형 역산 기법은 계산량을 획기적으로 줄여 전파형 역산의 적용성을 높여준다. 그러나 다수의 송신원 모음 자료를 동시에 모델링하여 사용하기 때문에 관측 자료의 수진기 위치가 송신원에 따라 다른 경우, 나머지(residual) 파동장에 불필요한 값을 생성하게 되고 이는 파형역산의 수렴성을 저해하게 된다. 특히, 제한된 벌림 거리(offset)를 갖는 스트리머 방식의 탐사자료는 동시 송신원 기법을 적용하기에 가장 어려운 자료 형태이다. 이러한 문제점을 극복하기 위해 최근에 global correlation에 기반한 목적함수가 제안되었고, 시간영역 전파형 역산에 성공적으로 적용되었다. 그러나 이 기법은 변형된 목적함수를 사용하기 때문에 나머지 파동장이 왜곡되고 경우에 따라 역산 결과에 부정적인 영향을 주기도 한다. 또한, 여러 가지 장점을 갖고 있는 주파수 영역 파형역산에 적용된 사례는 아직 보고된 적이 없다. 본 논문에서는 이러한 나머지 파동장의 왜곡을 최소화하기 위해 global correlation 계산 시 사용하는 자료에 진폭감쇠 기법을 적용한다. 진폭감쇠를 적용한 자료는 global correlation의 특성을 최적화하여 나머지 파동장의 왜곡을 줄이고 파형역산 결과를 향상시킨다. 시간 영역에서 구한 나머지 파동장을 주파수 영역에서 역전파시킴으로써 global correlation기법을 주파수 영역에서 구현한다. 스트리머 방식의 합성 탐사자료를 이용한 예제를 통해 본 논문에서 제안한 기법이 기존의 global correlation 목적함수에 기반한 동시 송신원 전파형 역산보다 향상된 결과를 얻을 수 있음을 보여준다.

Keywords

References

  1. Ben-Hadj-Ali, H., Operto, S., and Virieux, J., 2009, Three dimensional frequency-domain full waveform inversion with phase encoding, 79th Annual International Meeting, SEG, Expanded Abstracts, 2288-2292.
  2. Ben-Hadj-Ali, H., Operto, S., and Virieux, J., 2011, An efficient frequency-domain full waveform inversion method using simultaneous encoded sources, Geophysics, 76, R109-R124. https://doi.org/10.1190/1.3581357
  3. Capdeville, Y., Gung, Y., and Romanowicz, B., 2005, Towards global earth tomography using the spectral element method: A technique based on source stacking, Geophysical Journal International, 162, 541-554. https://doi.org/10.1111/j.1365-246X.2005.02689.x
  4. Choi, Y., and Alkhalifah, T., 2011, Application of encoded multi-source waveform inversion to marine-streamer acquisition based on the global correlation, 73rd Conference and Exhibition, EAGE, Extended Abstracts, F026.
  5. Fomel, S., 2007, Local seismic attributes, Geophysics, 72, A29-A33. https://doi.org/10.1190/1.2437573
  6. Ha, T., Chung, W., and Shin, C., 2009, Waveform inversion using a back-propagation algorithm and a Huber function, Geophysics, 74, R15-R24. https://doi.org/10.1190/1.3112572
  7. Jing, X., Finn, C. J., Dickens, T. A., and Willen, D. E., 2000, Encoding multiple shot gathers in prestack migration, 70th Annual International Meeting, SEG, Expanded Abstracts, 786-789.
  8. Kim, Y., Cho, H., Min, D.-J., and Shin, C., 2011, Comparison of Frequency-Selection Strategies for 2D Frequency-Domain Acoustic Waveform Inversion, Pure and Applied Geophysics, 168, 1715-1727. https://doi.org/10.1007/s00024-010-0196-8
  9. Krebs, J. R., Anderson, J. E., Hinkley, D., Neelamani, R., Lee, S., Baumstein, A., and Lacasse, M.-D., 2009, Fast fullwavefield seismic inversion using encoded sources, Geophysics, 74, WCC177-WCC188. https://doi.org/10.1190/1.3230502
  10. Morton, S. A., and Ober, C. C., 1998, Faster shot-record depth migration using phase encoding, 68th Annual International Meeting, SEG, Expanded Abstracts, 1131-1135.
  11. Romero, L. A., Ghiglia, D. C., Ober, C. C., and Morton, S. A., 2000, Phase encoding of shot records in prestack migration, Geophysics, 65, 426-436. https://doi.org/10.1190/1.1444737
  12. Routh, P. S., Krebs, J. R., Lazaratos, S., Baumstein, A. I., Chikichev, I., Lee, S., Downey, N., Hinkley, D., and Andorson, J. E., 2011, Full-wavefield inversion of marine streamer data with the encoded simultaneous source method, 73rd Conference and Exhibition, EAGE, Extended Abstracts, F032.
  13. Shin, C., Pyun, S., and Bednar, J. B., 2007, Comparison of waveform inversion, part 1: conventional wavefield vs logarithmic wavefield, Geophysical Prospecting, 55, 449-464. https://doi.org/10.1111/j.1365-2478.2007.00617.x
  14. Sirgue, L., and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, Geophysics, 69, 231-248. https://doi.org/10.1190/1.1649391
  15. Versteeg, R., 1994, The Marmousi experience: Velocity model determination on a synthetic complex data set, The Leading Edge, 13, 927-936. https://doi.org/10.1190/1.1437051
  16. Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, WCC1-WCC26. https://doi.org/10.1190/1.3238367

Cited by

  1. Joint Electromagnetic Inversion with Structure Constraints Using Full-waveform Inversion Result vol.17, pp.4, 2014, https://doi.org/10.7582/GGE.2014.17.4.187