DOI QR코드

DOI QR Code

Analysis on Vehicle Fires Caused by Damage of Diesel Particulate Filter (DPF)

매연저감장치 손상에 기인한 차량화재 사고사례 분석

  • Received : 2012.06.26
  • Accepted : 2012.08.13
  • Published : 2012.08.31

Abstract

This paper deal with vehicle fire caused by damage of diesel particulate filter (DPF) on diesel passenger vehicles. In order to reduce particulate matters included exhaust gases, a DPF in the exhaust system were installed diesel vehicles. A DPF was broken by excessively trapped particulate matters, regeneration error with a malfunction of ECU and defect of suction system such as swirl valve. If the DPF was broken, hot exhaust gases was released to the bottom of vehicle and released hot exhaust gases lead to occur the fire through combustible materials around the exhaust system. When a fire happened in the diesel vehicle caused by damage of DPF, silicate inorganic compounds were attached to the exhaust ventilation pipe and muffler. The silicate inorganic compounds were created by DPF combustion consisting of raw material ceramics. If the silicate inorganic compounds attached to the tail pipe in the diesel passenger vehicles, its fire cause will be assumed damage of DPF.

본 논문에서는 디젤 승용차량에서 매연저감장치 손상에 기인한 차량화재에 대하여 기술하였다. 디젤 차량에서는 배출가스에 포함되는 입자상 물질을 저감하기 위하여 매연저감장치를 배기계통에 설치하고 있다. 매연저감장치는 입자상 물질의 과다 포집, 재상과정에서의 오류 및 흡기계통 불량 등에 의해 재생과정에서 파손에 이르게 되며, 매연저감장치가 파손되는 경우, 고온의 배출가스가 분출되고, 차량 하부 배기계통의 주변 가연물을 통해 화재로 진전된다. 매연저감장치 손상에 의해 화재가 발생되는 경우, 배기계통 배관 및 머플러 부분에 규산염계 무기화합물이 부착되는 특징을 나타내며, 이 규산염계 무기화합물은 매연저감장치 내부 필터 재료인 세라믹 부분이 손상되는 과정에서 발생된다. 따라서 화재가 발생된 디젤 차량의 경우, 머플러 주변에서 규산염계 무기화합물이 식별되는 경우, 매연저감장치 손상에 기인한 화재로 추정할 수 있다.

Keywords

References

  1. Statistics Korea, Automobile ownership data, http://www.index.go.kr (2011).
  2. National fire data system Korea, 2011 fire statistics (2011).
  3. S. H. Lee, C. S. Baem Y. P. Lee and T. S. Han, "Effects of Engine Operating Conditions on Catalytic Converter Temperature in an SI Engine", SAE 2002-01-1677 (2002).
  4. S. K. Oh and B. C. Moon, "A Study on Prediction of Flow Characteristics and Performance of a Heavy-Duty Diesel Engine with Continuously Regeneration Method PM Reduction", KSAE, Vol. 12, No. 2 (2005).
  5. Michael Walsh, "Global Trends in Diesel Particulate Control-A 1995 Update", SAE 950149 (1995).
  6. K. H. Kim, G. J. Ahn, S. W. Lee, D. S. Eom and T. Y. Lee, "A Study of Unregulated Emission Reduction Charcteristics by Diesel Oxidation Catalyst for Light-Duty Diesel Engine", KSAE, Vol. 14, No. 2 (2006).
  7. H. Klein, S Lopp and E. Lox, "Hydrocarbon DeNOx Catalysis-System Development for Diesel Passenger Cars and Trucks", SAE 1999-01-0109 (1999).
  8. Matsuei Ueda, Yoshihiko Itoh, "A Concept of Plasma Assisted Catalyst System Using a DeNOx Catalyst for an Automobile Diesel Engine", SAE 2001-01-1834 (2004).
  9. C. H. Lee, K. C. Oh, D. I. Lee, S. H. Kim, H. S. Han, J. H. Bae and E. S. Kim, "An Experimental Study of Nano OM Emission Charcteristics of Commercial Diesel Engine with SCR System to Meet EURO-IV", SAE Technical Paper (2006).
  10. Y. J. Lee, G. C. Kim, Y. D. Pyo and Y. I. Jeong, "Analysis of DPF Regeneration Characteristics od Peugeot 607 HDI Diesel Passenger Car", Spring Conference of KSAE, Vol. 1 (2003).
  11. N. Jeuland, B. Dementhon, G. Plassat, P. Coroller, J. C. Momique and G. Belot, "Performances and Durability of DPF Tested on a First nad Second Test Phases Results", SAE 2002-01-2790 (2002).

Cited by

  1. A Case Analysis of a Car Fire that Broke Out due to Fuel Leakage from an Injector vol.18, pp.5, 2018, https://doi.org/10.9798/KOSHAM.2018.18.5.137
  2. Analysis of a Car Fire Caused by a Fuel Leakage from the Common Rail vol.18, pp.4, 2018, https://doi.org/10.9798/KOSHAM.2018.18.4.225