DOI QR코드

DOI QR Code

Analysis of Mass Transport in PEMFC GDL

연료전지 가스확산층(GDL) 내의 물질거동에 대한 연구

  • Received : 2021.04.23
  • Accepted : 2012.08.07
  • Published : 2012.10.01

Abstract

The 3D structure of GDL for fuel cells was measured using high-resolution X-ray tomography in order to study material transport in the GDL. A computational algorithm has been developed to remove noise in the 3D image and construct 3D elements representing carbon fibers of GDL, which were used for both structural and fluid analyses. Changes in the pore structure of GDL under various compression levels were calculated, and the corresponding volume meshes were generated to evaluate the anisotropic permeability of gas within GDL as a function of compression. Furthermore, the transfer of liquid water and reactant gases was simulated by using the volume of fluid (VOF) and pore-network model (PNM) techniques. In addition, the simulation results of liquid water transport in GDL were validated by analogous experiments to visualize the diffusion of fluid in porous media. Through this research, a procedure for simulating the material transport in deformed GDL has been developed; this will help in optimizing the clamping force of fuel cell stacks as well as in determining the design parameters of GDL, such as thickness and porosity.

연료전지 GDL 내의 물질전달에 관한 연구를 위하여 실제 GDL 을 고해상도 3 차원 스캐닝 장비를 활용하여 GDL의 다공 구조를 실측하였다. 측정된 Data의 노이즈를 제거하고 GDL의 Carbon-fiber 구조를 전산해석이 가능한 모델로 자동적으로 형성하는 알고리즘을 개발하였으며, 이 모델을 활용하여 스택 체결 시 압축에 의한 GDL 구조 변형을 예측하고, Carbon-fiber의 정렬 방향에 따른 변형 특성을 파악하였다. 또한, CFD 기법 중 하나인 VOF 모델과 Pore-network 모델을 이용하여 GDL 내부의 물거동 및 반응기체의 물질거동을 예측하였다. 마지막으로 상사실험을 통하여 해석 결과에 대한 검증을 실시하였다. 이를 통하여 실제 체결에 의하여 압축 변형된 GDL 내에서의 물질거동을 좀 더 정확히 예측할 수 있는 방법을 마련하고, GDL 체결 방향 및 최적 MPL 두께 선정 등의 실제 설계에 활용할 수 있었다.

Keywords

References

  1. Nam, J. H., Lee, K. J., Hwang, G. S., Kim, C. J., Kaviany, M., 2009, "Microporous Layer for Water Morphology Control in PEMFC," Int. J. Heat Mass Transfer, Vol.52, pp.2779-2791. https://doi.org/10.1016/j.ijheatmasstransfer.2009.01.002
  2. Tomiyasu, J., Harada, T., Fujiuchi, M., Inamuro, T., Hyodo, S. and Munekata, T., 2010, "Development of Electrode Structure for High Performance Fuel Cell Using CAE," FuelCell2010-33330, pp.805-810.
  3. Gao, Y., 2010, "Modeling of Fluid Behavior and Calculation of the Permeability of the Gas Diffusion Layer in PEM Fuel Cell Using Lattice Boltzmann Method," FuelCell2010-33018, pp. 421-429.
  4. Mukherjee, P. P., Mukundan, R. and Borup, R. L., 2010, "Modeling of Durability Effect on the Flooding Behavior in the PEFC Gas Diffusion Layer," FuelCell2010-33241, pp. 683-688.
  5. Lee, K.-J., Nam, J. H. and Kim, C.-J., 2010, "Pore- Network Analysis of Two-Phase Water Transport in Gas Diffusion Layers of Polymer Electrolyte Membrane Fuel Cells," Electrochimica Acta 54, pp. 1166-1176.
  6. Kang, J. H., Lee, K.-J., Nam, J. H., Kim, C.-J., Park, H. S., Lee, S. and Kwang, I., 2010, "Visualization of Invasion-Percolation Drainage Process in Porous Media Using Density-Matched Immiscible Fluids and Refractive-Index-Matched Solid Structures," Journal of Power Sources 195, pp. 2608-2612. https://doi.org/10.1016/j.jpowsour.2009.11.087
  7. Guoqing Wang, Partha P. Mukherjee, Chao-Yang Wang, 2007, "Optimization of Polymer Electrolyte Fuel Cell Cathode Catalyst Layers via Direct Numerical Simulation Modeling," Electrochimica Acta 52, pp. 6367-6377. https://doi.org/10.1016/j.electacta.2007.04.073

Cited by

  1. Variation of Porosity and Gas Permeability of Gas Diffusion Layers Under Compression vol.37, pp.8, 2013, https://doi.org/10.3795/KSME-B.2013.37.8.767
  2. Visualization of Water Droplets in the Simple Flow Channel and Rib Geometry for Polymer Electrolyte Membrane Fuel Cells (PEMFCs) vol.25, pp.4, 2014, https://doi.org/10.7316/KHNES.2014.25.4.386