DOI QR코드

DOI QR Code

Anti-Inflammatory Effects of Extracts from Ligustrum ovalifolium H. Leaves on RAW264.7 Macrophages

RAW264.7 대식세포에서 왕쥐똥나무잎 추출물의 항염증 효과

  • Kim, Yon-Suk (Dept. of Biotechnology, Konkuk University) ;
  • Lee, Seung-Jae (Dept. of Biotechnology, Konkuk University) ;
  • Hwang, Jin-Woo (Dept. of Biotechnology, Konkuk University) ;
  • Kim, Ee-Hwa (Dept. of Acupoint and Meridian, College of Oriental Medicine, Semyung University) ;
  • Park, Pyo-Jam (Dept. of Biotechnology, Konkuk University) ;
  • Jeong, Jae-Hyun (Dept. of Food and Biotechnology, Korea National University of Transportation)
  • 김연숙 (건국대학교 생명공학과) ;
  • 이승재 (건국대학교 생명공학과) ;
  • 황진우 (건국대학교 생명공학과) ;
  • 김이화 (세명대학교 한의학대학 경락경혈학교실) ;
  • 박표잠 (건국대학교 생명공학과) ;
  • 정재현 (한국교통대학교 식품공학과)
  • Received : 2012.04.30
  • Accepted : 2012.05.22
  • Published : 2012.09.30

Abstract

This study investigated the anti-inflammatory effects of Ligustrum ovalifolium H. (LOH) leaf extracts on RAW264.7 macrophages. Cell toxicity was determined by MTT assay. We evaluated the anti-inflammatory effects of LOH extracts by measuring nitric oxide (NO), reactive oxygen species (ROS), inducible NOS (iNOS) production, and cyclooxygenase-2 (COX-2) expression by Western blotting. LOH ethanolic extracts (0.05, 0.1, and 0.2 mg/mL) significantly suppressed LPS-stimulated production of NO. The intracellular ROS level also significantly decreased. LOH ethanolic extracts reduced the expression of iNOS and COX-2 proteins. The present results show that LOH ethanol extract has potent anti-inflammatory effects on RAW264.7 macrophages. These results also suggest that the anti-inflammatory effects of LOH extracts may be related to the inhibition of LPS-stimulated ROS and NO production. Therefore, ethanolic extracts of LOH leaves may be utilized as a good source of functional foods for protection against inflammatory diseases.

왕쥐똥나무잎(Ligustrum ovalifolium H.) 추출물의 세포독성을 살펴보기 위하여 RAW264.7 대식세포를 이용하여 세포의 생존율을 살펴본 결과 물 추출물 및 에탄올 추출물 모두 0.2 mg/mL의 농도까지 전혀 독성을 나타내지 않았다. 또한 왕쥐똥나무잎 추출물의 항염증 효과를 LPS에 의해 활성화된 RAW264.7 대식세포에서의 NO 생성억제 및 ROS 소거능과 염증관련 단백질 발현의 변화를 통하여 확인하였다. RAW264.7 대식세포에 LPS를 처리한 결과 NO의 함량이 11 ${\mu}M$ 수준으로 증가하였으나, 왕쥐똥나무잎 에탄올 추출물(0.05, 0.1, 0.2 mg/mL)을 처리하였을 때 NO의 함량이 7.03, 6.74, 6.64 ${\mu}M$로 농도 의존적으로 감소하였다. 왕쥐똥 나무잎 추출물이 LPS를 처리하여 생성되는 활성산소종에 미치는 영향을 확인한 결과, LPS를 처리한 대조군은 ROS가 36.55%로 증가하였으나, 왕쥐똥나무잎 에탄올 추출물(0.05, 0.1, 0.2 mg/mL)을 처리한 군은 세포내 활성산소종을 농도 의존적(23.86, 8.55, 5.48%)으로 감소시켰다. 또한 왕쥐똥나무잎 에탄올 추출물은 NO 생성과 연관 있는 iNOS 단백질의 발현을 농도 의존적으로 저해하였으며 이는 NO 생성 억제가 iNOS의 발현저해를 경유한 것으로 사료된다. 또한 다수의 항염증 약물들의 작용기전이 되는 COX-2의 생성억제를 살펴본 결과 왕쥐똥나무잎 에탄올 추출물은 LPS에 의해 발현되는 COX-2 단백질의 발현을 유의성 있게 억제하였음을 확인할 수 있었다. 이상의 결과를 요약하면 왕쥐똥나무잎 추출물이 LPS로 유도된 RAW264.7 대식세포내 활성산소종(ROS)과 산화질소 라디칼(NO)을 억제함으로써 염증을 억제하는 것으로 보이며, 이는 선행연구에서 나타난 왕쥐똥나무잎 추출물의 높은 라디칼 소거능 및 항산화능과 관련이 있는 것으로 판단된다. 또한 염증과 관련된 iNOS, COX-2 발현을 저해함으로써 왕쥐똥나무잎 추출물이 염증억제 효과를 나타내는 것으로 사료된다. 따라서 본 연구는 항염증 물질의 연구에 기초 자료로 활용이 가능할 것으로 기대된다. 또한 염증과 관련된 cytokine 및 단백질 발현 메커니즘에 대한 추가적인 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Willoughby DA. 1975. Human arthritis applied to animal models. Towards a better therapy. Ann Rheum Dis 34: 471-478. https://doi.org/10.1136/ard.34.6.471
  2. Nishida, T, Yabe Y, Fu HY, Hayashi Y, Asahi K, Eguchi H, Tsuji S, Tsujii M, Hayashi N, Kawano S. 2007. Geranylgeranylacetone induces cyclooxygenase-2 expression in cultured rat gastric epithelial cells through NF-${\kappa}B$. Dig Dis Sci 52: 1890-1896. https://doi.org/10.1007/s10620-006-9661-8
  3. Cheon YP, Mohammad LM, Park CH, Hong JH, Lee GD, Song JC, Kim KS. 2009. Bulnesia sarmienti aqueous extract inhibits inflammation in LPS-stimulated RAW 264.7 cells. J Life Sci 19: 479-485. https://doi.org/10.5352/JLS.2009.19.4.479
  4. Lee ES, Ju HK, Moon TC, Lee E, Jahng Y, Lee SH, Son JK, Baek SH, Chang HW. 2004. Inhibition of nitric oxide and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) production by propenone compound through blockade of nuclear factor (NF)-${\kappa}B$ activation in cultured murine macrophages. Biol Pharm Bull 27: 617-620. https://doi.org/10.1248/bpb.27.617
  5. Lee, TH, Kwak HB, Kim HH, Lee ZH, Chung DK, Baek NI, Kim J. 2007. Methanol extracts of Stewartia koreana inhibit cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression by blocking NF-kappa B transactivation in LPS-activated RAW 264.7 cells. Mol Cells 23: 398-404.
  6. Ryu, JH, Ahn H, Kim JY, Kim YK. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res 17: 485-489. https://doi.org/10.1002/ptr.1180
  7. Uttara B, Singh AV, Zamboni P, Mahajan RT. 2009. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7: 65-74. https://doi.org/10.2174/157015909787602823
  8. Bak MJ, Jeong JH, Kang HS, Jin KS, Seon OK, Jeong WS. 2009. Cedrela sinensis leaves suppress oxidative stress and expressions of iNOS and COX-2 via MAPK signaling pathways in RAW 264.7 cells. J Food Sci Nutr 14: 269-276.
  9. Koichi M, Toshio Y, Yoshiko K, Masao K. 1997. Acylated triterpenoids from Ligustrum ovalifolium. Phytochemistry 46: 977-979. https://doi.org/10.1016/S0031-9422(97)00384-1
  10. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeong JH. 2011. Antioxidant activities of extracts from Ligustrum ovalifolium H. leaves. J Korean Soc Food Sci Nutr 40: 1642-1647. https://doi.org/10.3746/jkfn.2011.40.12.1642
  11. Je JY, Park PJ, Kim EK, Ahn CB. 2009. Antioxidant and angiotensin I converting enzyme inhibitory activity of Bambusae caulis in liquamen. Food Chem 113: 932-935. https://doi.org/10.1016/j.foodchem.2008.08.022
  12. Lee SJ, Kim EK, Kim YS, Hwang JW, Lee KH, Choi DK, Kang H, Moon SH, Jeon BT, Park PJ. 2012. Purification and characterization of a nitric oxide inhibitory peptide from Ruditapes philippinarum. Food Chem Toxicol 50: 1660-1666. https://doi.org/10.1016/j.fct.2012.02.021
  13. Kim EK, Lee SJ, Moon SH, Jeon BT, Kim B, Park TK, Han JS, Park PJ. 2010. Neuroprotective effects of a novel peptide purified from venison protein. J Microbiol Biotechnol 20: 700-707. https://doi.org/10.4014/jmb.0909.09033
  14. Kim JY, Jung KS, Jeong HG. 2004. Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages. FEBS Lett 569: 321-326. https://doi.org/10.1016/j.febslet.2004.05.070
  15. Jeong IY, Jin CH, Park YD, Lee HJ, Choi DS, Byun MW, Kim YJ. 2008. Anti-inflammatory activity of an ethanol extract of Caesalpinia sappan L. in LPS-induced RAW 264.7 cells. J Food Sci Nutr 13: 253-258.
  16. Sarkar D, Fisher PB. 2006. Molecular mechanisms of aging- associated inflammation. Cancer Lett 236: 13-23. https://doi.org/10.1016/j.canlet.2005.04.009
  17. Vodovotz Y, Russell D, Xie QW, Bogdan C, Nathan C. 1995. Vesicle membrane association of nitric oxide synthase in primary mouse macrophage. J Immunol 154: 2914-2925.
  18. Sung MS, Kim YH, Choi, YM, Ham HM, Jeong HS, Lee JS. 2011. Anti-inflammatory effect of Erigeron annuus L. flower extract through heme oxygenase-1 induction in RAW 264.7 macrophages. J Korean Soc Food Sci Nutr 40: 1507-1511. https://doi.org/10.3746/jkfn.2011.40.11.1507
  19. Han JY, Kim YH, Sung JH, Um YR, Lee Y, Lee JS. 2009. Suppressive effects of Chrysanthemum zawadskii var. latilobum flower extracts on nitric oxide production and inducible nitric oxide synthase expression. J Korean Soc Food Sci Nutr 38: 1685-1690. https://doi.org/10.3746/jkfn.2009.38.12.1685
  20. Chun KS, Surh YJ. 2004. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 15: 1089-1100.
  21. Yoon WJ, Lee JA, Kim KN, Kim JY, Park SY. 2007. In vitro anti-inflammatory activity of the Artemisia fukudo extracts in murine macrophage RAW 264.7 cells. Korean J Food Sci Technol 39: 464-469.

Cited by

  1. Anti-inflammatory Activity of Hizikia fusiformis Extracts Fermented with Lactobacillus casei in LPS-stimulated RAW 264.7 Macrophages vol.30, pp.1, 2015, https://doi.org/10.7841/ksbbj.2015.30.1.38
  2. Antioxidative and Anti-inflammatory Activity of Extract from Milling By-products of Sorghum Cultivar, ‘Hwanggeumchal’ vol.59, pp.4, 2014, https://doi.org/10.7740/kjcs.2014.59.4.463
  3. Anti-Inflammatory Effect of Alginate Oligosaccharides Produced by an Alginate-Degrading Enzyme from Shewanella oneidensis PKA1008 on LPS-Induced RAW 264.7 Cells vol.48, pp.6, 2015, https://doi.org/10.5657/KFAS.2015.0888
  4. Anti-inflammatory Activity of Sargassum micracanthum Water Extract vol.57, pp.3, 2014, https://doi.org/10.3839/jabc.2014.036
  5. Anti-inflammatory Activity of Ethanol Extract of Undaria pinnatifida Root in RAW 264.7 Cells vol.47, pp.6, 2014, https://doi.org/10.5657/KFAS.2014.0751
  6. Anti-inflammatory activity of manassantin A from ultra-fine ground Saururus chinensis in lipopolysaccharide-stimulated RAW 264.7 cells vol.60, pp.1, 2017, https://doi.org/10.1007/s13765-016-0249-5
  7. Anti-oxidant and Anti-inflammatory Activities of Barley Sprout Extract vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.537
  8. Enhancement of Immune Activity of the Extracts from Codonopsis lanceolata by Stepwise Steaming Process and High Pressure Process vol.22, pp.2, 2014, https://doi.org/10.7783/KJMCS.2014.22.2.134
  9. Anti-inflammatory effect of barley leaf ethanol extract in LPS-stimulated RAW264.7 macrophage vol.22, pp.5, 2015, https://doi.org/10.11002/kjfp.2015.22.5.735
  10. Anti-Inflammatory Effect of Chondrus nipponicus Yendo Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells vol.45, pp.2, 2016, https://doi.org/10.3746/jkfn.2016.45.2.194
  11. Antioxidant and Anti-inflammatory Effects of Extracts from the Flowers of Weigela subsessilis on RAW 264.7 Macrophages vol.26, pp.3, 2016, https://doi.org/10.5352/JLS.2016.26.3.338
  12. Inhibitory effects of extracts from Smilacina japonica on lipopolysaccharide induced nitric oxide and prostaglandin E2production in RAW264.7 macrophages vol.41, pp.4, 2014, https://doi.org/10.5010/JPB.2014.41.4.201
  13. Anti-Inflammatory Effect of Ethanol Extract from Grateloupia elliptica Holmes on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1128
  14. Comparison of antioxidant, α-glucosidase inhibition and anti-inflammatory activities of the leaf and root extracts ofSmilax chinaL. vol.46, pp.4, 2013, https://doi.org/10.4163/jnh.2013.46.4.315
  15. Anti-Inflammatory Effect of Ethanol Extract from Onion (Allium cepa L.) Peel on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1612
  16. Anti-inflammatory Activity of the Undaria pinnatifida Water Extract vol.55, pp.4, 2012, https://doi.org/10.3839/jabc.2012.035
  17. Anti-inflammatory Effect of Ethanol Extract from Sargassum fulvellum on Lipopolysaccharide Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears vol.43, pp.8, 2014, https://doi.org/10.3746/jkfn.2014.43.8.1158
  18. In vitro Antioxidant and Anti-Inflammatory Activities of Ethanol Extract and Sequential Fractions of Flowers of Prunus persica in LPS-Stimulated RAW 264.7 Macrophages vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1439
  19. Comparison of Effect of Water and Ethanolic Extract from Roots and Leaves of Allium hookeri vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1808
  20. Antimicrobial and Anti-inflammatory Activities of Extracts from Glycyrrhizae radix cultured with Paecilomyces japonica vol.26, pp.3, 2016, https://doi.org/10.17495/easdl.2016.6.26.3.215
  21. Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions ofDoenjangin LPS-stimulated RAW 264.7 macrophages vol.9, pp.6, 2015, https://doi.org/10.4162/nrp.2015.9.6.569
  22. Anti-Inflammatory Activities of Extracts from Fermented Taraxacum platycarpum D. Leaves Using Hericium erinaceum Mycelia vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.020
  23. In vitro anti-inflammatory activity of extracts from Potentilla supina in murine macrophage RAW 264.7 cells vol.44, pp.1, 2017, https://doi.org/10.5010/JPB.2017.44.1.076
  24. Anti-Inflammatory Activity of Ethanolic Extract of Sargassum micracanthum vol.23, pp.12, 2012, https://doi.org/10.4014/jmb.1311.11025
  25. NF-κB와 MAPKs 활성 저해를 통한 미야베 모자반(Sargassum miyabei Yendo) 에탄올 추출물의 항염증 활성 vol.44, pp.4, 2016, https://doi.org/10.4014/mbl.1607.07001
  26. 염생식물 가는갯는쟁이 용매 추출물의 항염증활성 vol.27, pp.2, 2012, https://doi.org/10.5352/jls.2017.27.2.187
  27. LPS로 유도된 RAW 264.7 세포에 대한 레몬 머틀 잎 추출물의 항염증 효과 vol.27, pp.9, 2017, https://doi.org/10.5352/jls.2017.27.9.986
  28. 참마와 명아주의 항산화 및 항염증 효과 vol.43, pp.4, 2012, https://doi.org/10.15230/scsk.2017.43.4.337
  29. 산지별 고초균 발효누에의 이화학적 특성 및 생리활성 vol.27, pp.12, 2017, https://doi.org/10.5352/jls.2017.27.12.1470
  30. Effects of Dried Ginger Ethanol Extract on Gluten Sensitivity vol.21, pp.1, 2012, https://doi.org/10.11628/ksppe.2018.21.1.015
  31. Anti-microbial Activity and Anti-inflammatory Effects of Fucoidan Extracts vol.16, pp.2, 2012, https://doi.org/10.20402/ajbc.2017.0171
  32. 해조 다당류 추출물의 항균성 및 항염증 기능성평가 vol.4, pp.2, 2012, https://doi.org/10.17703/jcct.2018.4.2.161
  33. 다시마 물 추출액과 발효액의 항산화 및 항염증 활성 vol.29, pp.5, 2012, https://doi.org/10.5352/jls.2019.29.5.596
  34. LPS로 유도된 RAW 264.7 세포에서 오성탕(五聖湯) 추출물의 항염증 및 항산화 연구 vol.33, pp.1, 2012, https://doi.org/10.6114/jkood.2020.33.1.001
  35. 지렁쿠나무 메탄올 추출물의 생리활성 연구 vol.30, pp.11, 2012, https://doi.org/10.5352/jls.2020.30.11.965
  36. A Survey of Endophytic Fungi Associated with High-Risk Plants Imported for Ornamental Purposes vol.10, pp.12, 2012, https://doi.org/10.3390/agriculture10120643
  37. The Anti-Inflammatory Effect from Lipopolysaccharide-Stimulated RAW 264.7 of Extracts of Hydrangea serrata Seringe vol.50, pp.3, 2012, https://doi.org/10.3746/jkfn.2021.50.3.236
  38. Anti-inflammatory Effect of Distylium racemosum leaf Biorenovate Extract in LPS-stimulated RAW 264.7 Macrophages Cells vol.64, pp.4, 2021, https://doi.org/10.3839/jabc.2021.051