DOI QR코드

DOI QR Code

Antioxidant Properties and Ubiquinone Contents in Different Parts of Several Commercial Mushrooms

시판버섯의 부위별 항산화능과 유비퀴논 함량

  • Hong, Myung-Hee (Dept. of Food and Nutrition, Sungshin Women's University) ;
  • Jin, Yoo-Jeong (Dept. of Food and Nutrition, Sungshin Women's University) ;
  • Pyo, Young-Hee (Dept. of Food and Nutrition, Sungshin Women's University)
  • 홍명희 (성신여자대학교 식품영양학과) ;
  • 진유정 (성신여자대학교 식품영양학과) ;
  • 표영희 (성신여자대학교 식품영양학과)
  • Received : 2012.05.15
  • Accepted : 2012.06.06
  • Published : 2012.09.30

Abstract

Antioxidant properties and antioxidant compound contents in different parts of 14 commercial mushrooms were evaluated. Methanolic extracts from the entire mushroom, the pileus and the stipe, separately, were screened for their DPPH and ABTS free radical scavenging activities. Total ubiquinones (Coenzyme Qs; CoQs), total phenolic, and flavonoid contents were determined, in order to assess the extract's antioxidant activity. The portion of the mushroom selected had an effect on the results, with pileus methanolic extract exhibiting the greatest antioxidant effect (p<0.05). The analyzed mushrooms contained powerful antioxidants such as phenols (144.5~536.6 mg of gallic acid equivalents, mg GAE/100 g of dried weight, dw), flavonoids (3.7~31.2 mg of quercetin equivalents, mg QE/100 g dw) and ubiquinones (65.6~485.1 ${\mu}g$/100 g dw). Content of CoQ9 and CoQ10 in the 14 commercial mushrooms varied from 23.1 to 256.2 ${\mu}g$/100 g and from 16.1 to 238.3 ${\mu}g$/100 g, respectively. Phellinus linteus showed the highest antioxidant activity among all species due to the contribution of antioxidants such as phenols (530.5 mg GAE/100 g dw) and ubiquinones (308.8 ug/100 g dw). A positive linear correlation was demonstrated between free radical scavenging activity and total phenolic ($R^2=0.79$) and ubiquinone ($R^2=0.59$) contents in the pileus of mushrooms (p<0.05). Our data indicate that commercial mushrooms have potential as dietary sources of CoQs and phenolic antioxidants.

시판중인 14종의 식용버섯을 전체(E), 갓(P), 대(S)의 부위별로 분류하여 DPPH와 ABTS 라디칼 소거능에 따른 항산화활성과 이들 활성의 근거물질인 총 페놀, 플라보노이드, 그리고 유비퀴논 함량을 측정하였다. 시판버섯의 갓 부위(P)에 함유된 총 페놀함량은 193.9~536.6 mg/100 g으로 대 부위(S)의 156.8~370.8 mg/100 g보다 23.4~44.7% 높게 나타났다. 총 플라보노이드 함량은 quercetin의 동량 값으로 표시했을 때 전체 부위(E)에서 14.8~31.2 mg/100 g으로 나타나 총 페놀함량에 비해 매우 낮은 함량으로 측정되었다. 유비퀴논 함량 역시 갓 부위(P)가 163.5~485.1 ${\mu}g$/100 g으로 나타나 대 부위(S)의 65.6~142.9 ${\mu}g$/100 g에 비해 2.5~3.4배 더 높은 것으로 측정되어 시판버섯에 함유된 유효활성 성분은 주로 자실체의 주름부위에 분포된 것을 알 수 있다. 시료(10mg/mL)의 80% 메탄올 추출물의 DPPH와 ABTS 자유 라디칼 소거능에 따른 전체 부위(E)의 항산화활성은 각각 51.2~90.1%와 62.5~95.8%로 비교적 높게 나타났다. 특히 상황버섯의 라디칼 소거능은 평균 92.7%로 나타나 전체 부위(E)의 시판버섯 중 가장 높았으며 목이버섯은 평균 56.9%로 나타나 항산화활성이 가장 낮게 나타났다(p<0.05). 이 같은 결과는 각 부위별 자체 내 함유된 평균 총 페놀함량($R^2=0.080$) 및 유비퀴논 함량($R^2=0.55$)과 유의적인 상관관계(p<0.05)를 나타내어 이들 성분이 항산화활성에 영향을 미친 것으로 추정된다.

Keywords

References

  1. Hui YF, Den ES, Chi TH. 2002. Antioxidant and free radical scavenging activities of edible mushrooms. J Food Lipids 9: 35-46. https://doi.org/10.1111/j.1745-4522.2002.tb00206.x
  2. Chang ST, Buswell JA, Chiu SW. 1993. Mushroom biology and mushroom product. The Chinese University Press, Hong Kong. p 3-17.
  3. Collins MD, Jones D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45: 316-354.
  4. Ernster L, Dallner G. 1995. Biochemical, physiological, and medical aspects of ubiquinone function. Biochim Biophys Acta 1271: 195-204. https://doi.org/10.1016/0925-4439(95)00028-3
  5. Overvad K, Diamant B, Holm L, Holmer G, Mortensen SA, Stender S. 1999. Coenzyme Q10 in health and disease. Europ J Clin Nutr 53: 764-770. https://doi.org/10.1038/sj.ejcn.1600880
  6. Weber C, Bysted A, Holmer G. 1997. Coenzyme Q10 in the diet-daily intake and relative bioavailability. Mol Aspects Med 18: S251-S254. https://doi.org/10.1016/S0098-2997(97)00003-4
  7. Mattila P, Kumpulainen J. 2001. Coenzyme Q9 and Q10: contents in foods and dietary intake. J Food Comp Anal 14: 409-417. https://doi.org/10.1006/jfca.2000.0983
  8. Pyo YH, Oh HJ. 2011. Ubiquinone contents in Korean fermented foods and average daily intakes. J Food Comp Anal 24: 1123-1129. https://doi.org/10.1016/j.jfca.2011.03.018
  9. Kim HJ, Lee IS. 2004. Antimutagenic and cytotoxic effects of Korean wild mushrooms extracts. Korean J Food Sci Technol 36: 662-668.
  10. Choi SJ, Lee YS, Kim JK, Lim SS. 2010. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr 39: 1087-1096. https://doi.org/10.3746/jkfn.2010.39.8.1087
  11. Yanga JH, Lina HC, Mau JL. 2002. Antioxidant properties of several commercial mushrooms. Food Chem 77: 229-235. https://doi.org/10.1016/S0308-8146(01)00342-9
  12. Maua JL, Lina HC, Song SF. 2002. Antioxidant properties of several specialty mushrooms. Food Res Int 35: 519-526. https://doi.org/10.1016/S0963-9969(01)00150-8
  13. Choi YH, Kim MJ, Lee HS, Yun BS, Hu C, Kwak SS. 1998. Antioxidative compounds in aerial parts of Potentilla fragariodes. Korean J Pharmacogn 29: 79-85.
  14. Xu XM, Jun JY, Jung IH. 2007. A study on the antioxidant activity of HaeSongi mushroom (Hypsizigus marmoreus) hot water extracts. J Korean Soc Food Sci Nutr 36: 1351-1357. https://doi.org/10.3746/jkfn.2007.36.11.1351
  15. Sandrina AH, Lillian B, Maria JS, Anabela M, Isabel CFR. 2010. Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chem 119: 1443-1450. https://doi.org/10.1016/j.foodchem.2009.09.025
  16. Barros L, Ferreira MJ, Ferreira ICFR, Baptista P. 2007. Total phenols, ascorbic acid, ${\beta}$-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103: 413-419. https://doi.org/10.1016/j.foodchem.2006.07.038
  17. Kim HJ, Ahn MS, Kim GH, Kang MH. 2006. Antioxidative and antimicrobial activities of Pleurotus eryngii extracts prepared from different aerial part. Korean J Food Sci Technol 38: 799-804.
  18. Ferreira ICFR, Baptista P, Vilas-Boas M, Barros L. 2007. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem 100: 1511-1516. https://doi.org/10.1016/j.foodchem.2005.11.043
  19. Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdenic-phosphotungstic acid. Am J Enol Vitic 16: 144-158.
  20. Jia Z, Tang M, Wu J. 1999. The determination of flavonoid contents in mulberry and they scavenging effects on super-oxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  21. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Ferreira ICFR, Barros L, Abreu RMV. 2009. Antioxidants in wild mushrooms. Current Med Chem 16: 1543-1560. https://doi.org/10.2174/092986709787909587

Cited by

  1. Antioxidant and Anticancer Effects of Edible and Medicinal Mushrooms vol.42, pp.5, 2013, https://doi.org/10.3746/jkfn.2013.42.5.655
  2. Antioxidant activity and anti-obesity effect of Coprinus comatus in Zucker rat (fa/fa) vol.37, pp.1, 2014, https://doi.org/10.7853/kjvs.2014.37.1.51
  3. Antioxidant Activities and Antimicrobial Effects of Solvent Extracts from Lentinus edodes vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1144
  4. Physiological activitive of Grifola frondosa by log cultivation and bottle cultivation vol.13, pp.3, 2015, https://doi.org/10.14480/JM.2015.13.3.185
  5. Changes in the Quality of New Cultivar Dewdrop Pine Mushroom (Lentinula edodes GNA01) Depending on the Storage Temperature vol.32, pp.5, 2016, https://doi.org/10.9724/kfcs.2016.32.5.585
  6. Evaluation of Antioxidant and Antimicrobial Activities of Solvent Extracts from Coriolus versicolor vol.44, pp.12, 2015, https://doi.org/10.3746/jkfn.2015.44.12.1793
  7. Comparison of Antioxidant Activities of Pileus and Stipe from White Beech Mushrooms (Hypsizygus marmoreus) vol.26, pp.8, 2016, https://doi.org/10.5352/JLS.2016.26.8.928
  8. Component analysis and immuno-stimulating activity of Sparassis crispa stipe vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.515
  9. Quality Characteristics of Yanggaeng Supplemented with Sanghwang Mushroom (Phellinus linteus) Mycelia vol.19, pp.3, 2013, https://doi.org/10.14373/JKDA.2013.19.3.253
  10. Correlation of the fractal enzymatic browning rate with the temperature in mushroom, pear and apple slices vol.65, 2016, https://doi.org/10.1016/j.lwt.2015.08.052
  11. Antioxidant Activities and Antimicrobial Effects of Extracts from Auricularia auricula-judae vol.45, pp.3, 2016, https://doi.org/10.3746/jkfn.2016.45.3.327
  12. Studies on the Antioxidative Activities and Active Components of the Extracts from Pleurotus ostreatus vol.31, pp.2, 2016, https://doi.org/10.13103/JFHS.2016.31.2.119
  13. Antioxidant and Anti-Adipogenic Activities of Bread Containing Corn Silk, Job's Tears, Lentinus edodes, and Apple Peel in 3T3-L1 Preadipocytes vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.651
  14. Growth characters and harvest time for the artificial cultivation of Mycoleptodonoides aitchisonii vol.13, pp.2, 2015, https://doi.org/10.14480/JM.2015.13.2.114
  15. 감과피 첨가배지가 큰느타리 버섯의 항산화활성에 미치는 영향 vol.15, pp.4, 2012, https://doi.org/10.14480/jm.2017.15.4.210