DOI QR코드

DOI QR Code

Environmental Impact Assessment of Buildings based on Life Cycle Assessment (LCA) Methodology

전과정평가(LCA) 방법을 이용한 건축물에 대한 환경영향 평가 방법

  • 홍태훈 (연세대학교 건축공학과) ;
  • 지창윤 (연세대학교 대학원 건축공학과) ;
  • 정광복 (연세대학교 대학원 건축공학과)
  • Received : 2012.07.03
  • Accepted : 2012.08.03
  • Published : 2012.09.30

Abstract

Most of the studies on reduction of buildings' environmental burden in the construction industry have been focused on carbon dioxide emission, although there are various kinds of environmental issues such as global warming, acidification, and etc. which are considered by many researchers. Therefore, this study defined and suggested six impact categories and the principles to assess each impact for the assessment of comprehensive environmental impacts of buildings. The six impact categories are abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, and photochemical oxidation. A case study has been conducted through comparative analysis of two structural design alternatives to confirm the necessity of assessing the six impact categories. That is, the results of global warming potential and the six impacts proposed in this study were compared. By comparing the results of only global warming potential, the second design alternative using 24MPa concrete was chosen as a better alternative, while the first design alternative using 21MPa concrete was resulted as a better alternative when six impact categories were considered. The results mean that the assessment of various environmental impacts is an appropriate and reasonable approach and the comprehensive assessment offers more reliable results of environmental impacts in the building construction.

환경문제에 대한 인식의 확산과 함께 건설산업에서도 건축물로 인한 환경영향을 저감하고자 하는 연구가 수행되었으나, 대부분의 연구는 이산화탄소에 집중되어 왔다. 하지만, 이산화탄소로 대표되는 지구온난화 뿐만 아니라 다양한 환경영향이 존재하며, 해외에서는 이러한 환경영향에 대한 포괄적인 분석이 적극적으로 시행되고 있다. 이에 따라, 본 연구에서는 건축물로 인한 환경영향을 보다 포괄적으로 평가할 수 있도록, 6가지의 환경영향 범주를 정의하였다. 즉, 지구온난화, 오존층파괴, 자원고갈, 산성화, 부영양화, 광화학산화를 환경영향 범주로 정의하고, 평가 기준들을 제시하였다. 그리고 본 연구에서 제시한 환경영향 범주에 대한 평가의 필요성을 검토하기 위하여 2가지 비교 설계안을 대상으로 사례분석을 시행한 결과, 지구온난화만을 평가한 것과는 상이한 결과가 도출되었다. 즉, 이산화탄소로 대표되는 지구온난화 지수를 기준으로 비교하면 2안이 우수한 것으로 판단되었지만, 6가지 영향범주 모두를 평가한 결과에서는 1안이 우수하다는 결과가 도출되었다. 이는 지구온난화 뿐만 아니라 다양한 환경영향을 포함하여 평가하는 것이 보다 타당한 결과 도출을 유도할 수 있다는 것을 의미한다. 따라서 건축물에 대한 환경영향을 평가하기 위하여, 본 연구에서 제시한 6가지 환경영향 범주를 사용한다면, 보다 타당한 결과의 도출이 가능할 것이라 판단된다.

Keywords

References

  1. 김윤덕.차희성.김경래.신동우 (2011). "LCC-LCA 통합 분석에 의한 친환경 건설기술 평가방법", 한국건설관리학회 논문집, 제12권 제3호. pp.91-100
  2. 녹색성장위원회 (2011). 2020년 저탄소 녹색사회 구현을 위한 로드맵, 부문별.업종별.연도별 온실가스 감축목표 확정, 보도자료
  3. 백정훈.태성호.노승준.이주호.신성우 (2011). "건축물 계획단계 $LCCO_2$ 평가시스템의 필요요소에 관한 연구", 한국건설관리학회 논문집 제12권 제3호. pp.31-41
  4. 신재규.김유민.손장열 (2009). "$CO_2$ 배출량에 따른 노후 공 동주택의 재건축 판단 방안 연구", 대한건축학회 학술발표대회 논문집 계획계, 제29권 제1호. pp.661-664
  5. 염은숙.강혜진.박진철.이언구 (2008). "LCC분석법을 이용한 친환경 건축 요소기술의 경제성 평가방법에 관한 연구", 대한건축학회 학술발표대회 논문집 제28권 제1호, pp.655-658
  6. 오길종.류지연.전태완.윤정인.정다위.정일록.임진홍.김남준.이병훈 (2008). 전과정평가기법을 이용한 생활폐기물 관리 지원시스템 개발(I)-수집.운반을 중심으로, 국립환경과학원. p.36
  7. 이강희.양재혁(2009). "주요 건축자재의 에너지소비와 이산화탄소 배출원단위 산정 연구", 대한건축학회논문집 계획계, 제25권 제6호. pp.43-50
  8. 이관호.김남규.이언구 (2003). "LCA 및 LCC를 고려한 환경 친화적 리모델링의 평가방법에 관한 연구", 한국태양에너지학회 논문집, 제23권 제1호. pp.57-67
  9. 이시영.변순주.박상길.조규형 (2008). "전과정평가(LCA)를 이용한 공공시설물에서의 환경부하량에 따른 환경영향평가에 관한 연구-S댐 비상여수로 건설사업 사례연구.", 대한토목학회지, 제56권 제5호. pp.47-53
  10. 정영선.양관섭.이승언 (2003). "LCA 프로그램을 이용한 건축물의 환경부하 및 경제성 평가 사례", 대한건축학회 학술발표논문집, 제23권 제1호, pp.749-752
  11. 채창우.이승언.이윤규.정영선.장대희.박은미 (2008). 건축자재 환경성정보 국가D/B 구축사업 최종보고서, 국토해양부, 한국건설교통기술평가원. pp.287-292
  12. 한국환경산업기술원. 환경성적표지제도 안내. http://www.edp.or.kr/edp/system/system_intro.asp. (2012.3.12)
  13. 환경부.한국환경공단, (2011). 2010 전국 폐기물 발생 및 처리 현황. pp.10-33
  14. 홍태훈.지창윤.장민호 (2012). "산업연관분석법을 이용한 강도에 따른 구조용 강재의 이산화탄소 배출량 데이터 구축." 한국건설관리학회 논문집 제13권 제4호. pp.131-139
  15. AirKorea, 통합대기환경지수(CAI)의 개요. http://www.airkorea.or.kr/ (2012.04.07)
  16. Bare, J.C., Norris G.A., Pennington D.W., and Mckone T. (2003) "TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts." Journal of Industrial Ecology 6(3). pp.49-78
  17. Bare J.C., Hofsteter, P., Pennington D.W., Udo de Haes H.A., (2000) "Life Cycle Impact Assessment Workshop Summary Midpoints versus Endpoints: The Sacrifices and Benefits." International Journal of Life Cycle Assessment, 5(6). pp.319-326 https://doi.org/10.1007/BF02978665
  18. Crawford R., (2011). Life Cycle Assessment in the Built Environment. London, Taylor and Francis.
  19. Derwent, R.G., Jenkin M.E., Saunders, S.M., Piling, M.J., (1998) "Photochemical ozone creation potentials for organic compounds in Northwest Europe calculated with a master chemical mechanism." Atmospheric Environment. 32(14-15) pp.2429-2441 https://doi.org/10.1016/S1352-2310(98)00053-3
  20. Environmental Protection Agency (EPA) (2005). Spatial differentiation in Life Cycle impact assessment-The EDIP 2003 methodology. EPA, Danish Ministry of the Environment. p.43
  21. Goedkoop, M., Oele, M., Schryver, A.D., Vieira, M., (2008) SimaPro Database Manual Methods Library. Product ecology consultants. pp.9-12
  22. Guinee, J.B., Gorree, M., Heijung, R., Huppoes, G., Kleijn, R., Koning, A., Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., Bruijn, H. Duin R., Huijbregts, M.A.J., (2001) "Life cycle assessment: An operational guide to the ISO standards." final report part 2A. Ministry of Housing, Spatial Planning and the Environment (VROM) and Centre of Environmental Science-Leiden University (CML). pp.65-66
  23. Hauschild, M. and Potting, J. (2004) "Spatial differentiation in life cycle assessment? the EDIP 2003 methodology." Guidelines from the Danish Environmental Protection Agency, Copenhagen
  24. Heijungs, R., Guinee, J., Huppes G., Lankreijer, R.M., Udo de Haes H.A., Wegener Sleeswijk A., Ansems A.M.M., Eggle, P.G., Duin R., Goede, H.P. (1992) "Environmental Life Cycle Assessment of products. Guide and Backgrounds." CML, Leiden University, Leiden.
  25. Hong T, Ji C, Jang M, Park H (2012a). "Integrated Model for Assessing the Cost and $CO_2$ Emission(IMACC) for Sustainable Structural Design in Ready-Mix Concrete." Journal of Environmental Management 103. pp.1-8 https://doi.org/10.1016/j.jenvman.2012.02.034
  26. Hong T, Ji C, Jang M, Park H (2012b). "Predicting the $CO_2$ Emission of Concrete Using Statistical Analysis." Journal of Construction Engineering and Project Management, 2(2). pp.53-60 https://doi.org/10.6106/JCEPM.2012.2.2.053
  27. Hong T., Koo C., and Park S., (2012c). "A decision support model for improving a multi-family housing complex based on $CO_2$ emission from gas energy consumption." Building and Environment, 52(6), pp.142-151 https://doi.org/10.1016/j.buildenv.2012.01.001
  28. Hong T., Kim J., and Koo C., (2012d). "LCC and $LCCO_2$ Analysis of Green Roofs in Elementary Schools with Energy Saving Measures." Energy and Buildings, 45(2), pp.229-239 https://doi.org/10.1016/j.enbuild.2011.11.006
  29. Hong T., Kim H., and Kwak T., (2012e). "Energy Saving Techniques for Reducing $CO_2$ Emission in Elementary Schools." Journal of Management in Engineering, 28(1), pp.1-12. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000101
  30. ISO 14040 (1997). "Environmental Management-Life Cycle Assessment-Principles and Framework", International Organization for Standardization.
  31. IPCC Working Group (2007). Climate Change 2007, The Physical Science Basis. Cambridge University Press.
  32. UN (1997). Kyoto Protocol to the United Nations Framework Convention on Climate Change. United Nations, Kyoto
  33. UN (1987). Montreal Protocol on Substances that Deplete the Ozone Layer, Montreal
  34. World Meteorological Organization (WMO) (2006) Scientific Assessment of Ozone Depletion:2006, Chapter 8 in: Daniel, J.S., Velders, G.J.M., and Coauthors, Halocarbon Scenarios, Ozone Depletion Potentials, and Global Warming Potentials, WMO Geneva, 2006

Cited by

  1. Comparison of Environmental Impacts of Green and Traditional Buildings using Life Cycle Assessment vol.15, pp.3, 2014, https://doi.org/10.6106/KJCEM.2014.15.3.058
  2. Development of the Assessment Framework for the Environmental Impacts in Construction vol.3, pp.3, 2013, https://doi.org/10.6106/JCEPM.2013.3.3.001
  3. A Study on the Characteristics of Environmental Impact in Construction Sector of High-Speed Railway using LCA vol.17, pp.3, 2014, https://doi.org/10.7782/JKSR.2014.17.3.178
  4. Analysis regarding the Environmental Impact of the Life Cycle of Housing Complexes in Korea vol.15, pp.5, 2014, https://doi.org/10.6106/KJCEM.2014.15.5.013