DOI QR코드

DOI QR Code

The roles of FADD in extrinsic apoptosis and necroptosis

  • Lee, Eun-Woo (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Seo, Jin-Ho (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Jeong, Man-Hyung (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Lee, Sang-Sik (Department of Biomedical Engineering, Kwandong University) ;
  • Song, Jae-Whan (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2012.09.10
  • Published : 2012.09.30

Abstract

Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect without showing apoptotic features. Numerous studies have suggested that FADD regulates cell cycle progression, proliferation, and autophagy, affecting these phenomena. Recently, programmed necrosis, also called necroptosis, was shown to be a key mechanism that induces embryonic lethality and an immune defect. Supporting these findings, FADD was shown to be involved in various necroptosis models. In this review, we summarize the mechanism of extrinsic apoptosis and necroptosis, and discuss the in vivo and in vitro roles of FADD in necroptosis induced by various stimuli.

Keywords

References

  1. Werner, M. H., Wu, C. and Walsh, C. M. (2006) Emerging roles for the death adaptor FADD in death receptor avidity and cell cycle regulation. Cell Cycle. 5, 2332-2338. https://doi.org/10.4161/cc.5.20.3385
  2. Tourneur, L. and Chiocchia, G. (2010) FADD: a regulator of life and death. Trends Immunol. 31, 260-269. https://doi.org/10.1016/j.it.2010.05.005
  3. Alappat, E. C., Feig, C., Boyerinas, B., Volkland, J., Samuels, M., Murmann, A. E., Thorburn, A., Kidd, V. J., Slaughter, C. A., Osborn, S. L., Winoto, A., Tang, W. J. and Peter, M. E. (2005) Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol. Cell 19, 321-332. https://doi.org/10.1016/j.molcel.2005.06.024
  4. Jang, M. S., Lee, S. J., Kim, C. J., Lee, C. W. and Kim, E. (2011) Phosphorylation by polo-like kinase 1 induces the tumor-suppressing activity of FADD. Oncogene 30, 471-481. https://doi.org/10.1038/onc.2010.423
  5. Jang, M. S., Lee, S. J., Kang, N. S. and Kim, E. (2011) Cooperative phosphorylation of FADD by Aur-A and Plk1 in response to taxol triggers both apoptotic and necrotic cell death. Cancer Res. 71, 7207-7215. https://doi.org/10.1158/0008-5472.CAN-11-0760
  6. Alappat, E. C., Volkland, J. and Peter, M. E. (2003) Cell cycle effects by C-FADD depend on its C-terminal phosphorylation site. J. Biol. Chem. 278, 41585-41588. https://doi.org/10.1074/jbc.C300385200
  7. Rochat-Steiner, V., Becker, K., Micheau, O., Schneider, P., Burns, K. and Tschopp, J. (2000) FIST/HIPK3: a Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits fas-mediated Jun NH(2)-terminal kinase activation. J. Exp. Med. 192, 1165-1174. https://doi.org/10.1084/jem.192.8.1165
  8. Scaffidi, C., Volkland, J., Blomberg, I., Hoffmann, I., Krammer, P. H. and Peter, M. E. (2000) Phosphorylation of FADD/ MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase. J. Immunol. 164, 1236-1242. https://doi.org/10.4049/jimmunol.164.3.1236
  9. Schrijvers, M. L., Pattje, W. J., Slagter-Menkema, L., Mastik, M. F., Gibcus, J. H., Langendijk, J. A., van der Wal, J. E., van der Laan, B. F. and Schuuring, E. (2012) FADD expression as a prognosticator in early-stage glottic squamous cell carcinoma of the larynx treated primarily with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 83, 1220-1226. https://doi.org/10.1016/j.ijrobp.2011.09.060
  10. Schinske, K. A., Nyati, S., Khan, A. P., Williams, T. M., Johnson, T. D., Ross, B. D., Tomas, R. P. and Rehemtulla, A. (2011) A novel kinase inhibitor of FADD phosphorylation chemosensitizes through the inhibition of NF-kappaB. Mol. Cancer Ther. 10, 1807-1817. https://doi.org/10.1158/1535-7163.MCT-11-0362
  11. Bhojani, M. S., Chen, G., Ross, B. D., Beer, D. G. and Rehemtulla, A. (2005) Nuclear localized phosphorylated FADD induces cell proliferation and is associated with aggressive lung cancer. Cell Cycle. 4, 1478-1481. https://doi.org/10.4161/cc.4.11.2188
  12. Chen, G., Bhojani, M. S., Heaford, A. C., Chang, D. C., Laxman, B., Thomas, D. G., Griffin, L. B., Yu, J., Coppola, J. M., Giordano, T. J., Lin, L., Adams, D., Orringer, M. B., Ross, B. D., Beer, D. G. and Rehemtulla, A. (2005) Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas. Proc. Natl. Acad. Sci. U.S.A. 102, 12507-12512. https://doi.org/10.1073/pnas.0500397102
  13. Tourneur, L., Mistou, S., Michiels, F. M., Devauchelle, V., Renia, L., Feunteun, J. and Chiocchia, G. (2003) Loss of FADD protein expression results in a biased Fas-signaling pathway and correlates with the development of tumoral status in thyroid follicular cells. Oncogene 22, 2795-2804. https://doi.org/10.1038/sj.onc.1206399
  14. Tourneur, L., Delluc, S., Levy, V., Valensi, F., Radford- Weiss, I., Legrand, O., Vargaftig, J., Boix, C., Macintyre, E. A., Varet, B., Chiocchia, G. and Buzyn, A. (2004) Absence or low expression of fas-associated protein with death domain in acute myeloid leukemia cells predicts resistance to chemotherapy and poor outcome. Cancer Res. 64, 8101-8108. https://doi.org/10.1158/0008-5472.CAN-04-2361
  15. Bonnet, M. C., Preukschat, D., Welz, P. S., van Loo, G., Ermolaeva, M. A., Bloch, W., Haase, I. and Pasparakis, M. (2011) The adaptor protein fadd protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35, 572-582. https://doi.org/10.1016/j.immuni.2011.08.014
  16. Lu, J. V., Weist, B. M., van Raam, B. J., Marro, B. S., Nguyen, L. V., Srinivas, P., Bell, B. D., Luhrs, K. A., Lane, T. E., Salvesen, G. S. and Walsh, C. M. (2011) Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc. Natl. Acad. Sci. U.S.A. 108, 15312-15317. https://doi.org/10.1073/pnas.1102779108
  17. Welz, P. S., Wullaert, A., Vlantis, K., Kondylis, V., Fernandez- Majada, V., Ermolaeva, M., Kirsch, P., Sterner-Kock, A., van Loo, G. and Pasparakis, M. (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330-334. https://doi.org/10.1038/nature10273
  18. Zhang, H., Zhou, X., McQuade, T., Li, J., Chan, F. K. and Zhang, J. (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373-376. https://doi.org/10.1038/nature09878
  19. Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B. and Tschopp, J. (2000) Fas triggers an alternative, caspase- 8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489-495. https://doi.org/10.1038/82732
  20. Lin, Y., Devin, A., Rodriguez, Y. and Liu, Z. G. (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514-2526. https://doi.org/10.1101/gad.13.19.2514
  21. Feng, S., Yang, Y., Mei, Y., Ma, L., Zhu, D. E., Hoti, N., Castanares, M. and Wu, M. (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19, 2056-2067. https://doi.org/10.1016/j.cellsig.2007.05.016
  22. O'Donnell, M. A., Perez-Jimenez, E., Oberst, A., Ng, A., Massoumi, R., Xavier, R., Green, D. R. and Ting, A. T. (2011) Caspase 8 inhibits programmed necrosis by processing CYLD. Nat. Cell Biol. 13, 1437-1442. https://doi.org/10.1038/ncb2362
  23. Kroemer, G., Galluzzi, L. and Brenner, C. (2007) Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99-163. https://doi.org/10.1152/physrev.00013.2006
  24. Mahmood, Z. and Shukla, Y. (2010) Death receptors: targets for cancer therapy. Exp. Cell Res. 316, 887-899. https://doi.org/10.1016/j.yexcr.2009.12.011
  25. Mc Guire, C., Beyaert, R. and van Loo, G. (2011) Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci. 34, 619-628. https://doi.org/10.1016/j.tins.2011.09.002
  26. French, L. E. and Tschopp, J. (2003) Protein-based therapeutic approaches targeting death receptors. Cell Death Differ. 10, 117-123. https://doi.org/10.1038/sj.cdd.4401185
  27. Wajant, H. (2003) Death receptors. Essays Biochem. 39, 53-71.
  28. Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H. and Peter, M. E. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579-5588.
  29. Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H. and Peter, M. E. (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675-1687. https://doi.org/10.1093/emboj/17.6.1675
  30. Barnhart, B. C., Alappat, E. C. and Peter, M. E. (2003) The CD95 type I/type II model. Semin. Immunol. 15, 185-193. https://doi.org/10.1016/S1044-5323(03)00031-9
  31. Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., Roth, K. A. and Korsmeyer, S. J. (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886-891. https://doi.org/10.1038/23730
  32. Ozoren, N. and El-Deiry, W. S. (2002) Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia 4, 551-557. https://doi.org/10.1038/sj.neo.7900270
  33. Willis, S. N. and Adams, J. M. (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. 17, 617-625. https://doi.org/10.1016/j.ceb.2005.10.001
  34. Johnstone, R. W., Frew, A. J. and Smyth, M. J. (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer 8, 782-798. https://doi.org/10.1038/nrc2465
  35. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J. and Vaux, D. L. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53. https://doi.org/10.1016/S0092-8674(00)00009-X
  36. Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42. https://doi.org/10.1016/S0092-8674(00)00008-8
  37. Lavrik, I., Golks, A. and Krammer, P. H. (2005) Death receptor signaling. J. Cell Sci. 118, 265-267. https://doi.org/10.1242/jcs.01610
  38. Wilson, N. S., Dixit, V. and Ashkenazi, A. (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat. Immunol. 10, 348-355. https://doi.org/10.1038/ni.1714
  39. Symons, A., Beinke, S. and Ley, S. C. (2006) MAP kinase kinase kinases and innate immunity. Trends Immunol. 27, 40-48. https://doi.org/10.1016/j.it.2005.11.007
  40. Varfolomeev, E. E. and Ashkenazi, A. (2004) Tumor necrosis factor: an apoptosis JuNKie? Cell 116, 491-497. https://doi.org/10.1016/S0092-8674(04)00166-7
  41. Bertrand, M. J., Milutinovic, S., Dickson, K. M., Ho, W. C., Boudreault, A., Durkin, J., Gillard, J. W., Jaquith, J. B., Morris, S. J. and Barker, P. A. (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689-700. https://doi.org/10.1016/j.molcel.2008.05.014
  42. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. and Chen, Z. J. (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245-257. https://doi.org/10.1016/j.molcel.2006.03.026
  43. Kanayama, A., Seth, R. B., Sun, L., Ea, C. K., Hong, M., Shaito, A., Chiu, Y. H., Deng, L. and Chen, Z. J. (2004) TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535-548. https://doi.org/10.1016/j.molcel.2004.08.008
  44. Declercq, W., Vanden Berghe, T. and Vandenabeele, P. (2009) RIP kinases at the crossroads of cell death and survival. Cell 138, 229-232. https://doi.org/10.1016/j.cell.2009.07.006
  45. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. and Kroemer, G. (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700-714. https://doi.org/10.1038/nrm2970
  46. Shembade, N., Ma, A. and Harhaj, E. W. (2010) Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135-1139. https://doi.org/10.1126/science.1182364
  47. Enesa, K., Zakkar, M., Chaudhury, H., Luong le, A., Rawlinson, L., Mason, J. C., Haskard, D. O., Dean, J. L. and Evans, P. C. (2008) NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J. Biol. Chem. 283, 7036-7045. https://doi.org/10.1074/jbc.M708690200
  48. Xu, G., Tan, X., Wang, H., Sun, W., Shi, Y., Burlingame, S., Gu, X., Cao, G., Zhang, T., Qin, J. and Yang, J. (2010) Ubiquitin-specific peptidase 21 inhibits tumor necrosis factor alpha-induced nuclear factor kappaB activation via binding to and deubiquitinating receptor-interacting protein 1. J. Biol. Chem. 285, 969-978. https://doi.org/10.1074/jbc.M109.042689
  49. Wang, L., Du, F. and Wang, X. (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133, 693-703. https://doi.org/10.1016/j.cell.2008.03.036
  50. Schutze, S., Tchikov, V. and Schneider-Brachert, W. (2008) Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 655-662. https://doi.org/10.1038/nrm2430
  51. Varfolomeev, E. and Vucic, D. (2008) (Un)expected roles of c-IAPs in apoptotic and NFkappaB signaling pathways. Cell Cycle 7, 1511-1521. https://doi.org/10.4161/cc.7.11.5959
  52. Vince, J. E., Wong, W. W., Khan, N., Feltham, R., Chau, D., Ahmed, A. U., Benetatos, C. A., Chunduru, S. K., Condon, S. M., McKinlay, M., Brink, R., Leverkus, M., Tergaonkar, V., Schneider, P., Callus, B. A., Koentgen, F., Vaux, D. L. and Silke, J. (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131, 682-693. https://doi.org/10.1016/j.cell.2007.10.037
  53. Ozturk, S., Schleich, K. and Lavrik, I. N. (2012) Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. Exp. Cell Res. 318, 1324-1331. https://doi.org/10.1016/j.yexcr.2012.01.019
  54. Yu, J. W. and Shi, Y. (2008) FLIP and the death effector domain family. Oncogene 27, 6216-6227. https://doi.org/10.1038/onc.2008.299
  55. Micheau, O., Thome, M., Schneider, P., Holler, N., Tschopp, J., Nicholson, D. W., Briand, C. and Grutter, M. G. (2002) The long form of FLIP is an activator of caspase- 8 at the Fas death-inducing signaling complex. J. Biol. Chem. 277, 45162-45171. https://doi.org/10.1074/jbc.M206882200
  56. Boatright, K. M., Deis, C., Denault, J. B., Sutherlin, D. P. and Salvesen, G. S. (2004) Activation of caspases-8 and -10 by FLIP(L). Biochem. J. 382, 651-657. https://doi.org/10.1042/BJ20040809
  57. Chang, L., Kamata, H., Solinas, G., Luo, J. L., Maeda, S., Venuprasad, K., Liu, Y. C. and Karin, M. (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalphainduced cell death by inducing c-FLIP(L) turnover. Cell 124, 601-613. https://doi.org/10.1016/j.cell.2006.01.021
  58. Panka, D. J., Mano, T., Suhara, T., Walsh, K. and Mier, J. W. (2001) Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J. Biol. Chem. 276, 6893-6896. https://doi.org/10.1074/jbc.C000569200
  59. Pennarun, B., Meijer, A., de Vries, E. G., Kleibeuker, J. H., Kruyt, F. and de Jong, S. (2010) Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim. Biophys. Acta. 1805, 123-140.
  60. Feig, C., Tchikov, V., Schutze, S. and Peter, M. E. (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J. 26, 221-231. https://doi.org/10.1038/sj.emboj.7601460
  61. Wagner, K. W., Punnoose, E. A., Januario, T., Lawrence, D. A., Pitti, R. M., Lancaster, K., Lee, D., von Goetz, M., Yee, S. F., Totpal, K., Huw, L., Katta, V., Cavet, G., Hymowitz, S. G., Amler, L. and Ashkenazi, A. (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat. Med. 13, 1070-1077. https://doi.org/10.1038/nm1627
  62. Kaunisto, A., Kochin, V., Asaoka, T., Mikhailov, A., Poukkula, M., Meinander, A. and Eriksson, J. E. (2009) PKC-mediated phosphorylation regulates c-FLIP ubiquitylation and stability. Cell Death Differ. 16, 1215-1226. https://doi.org/10.1038/cdd.2009.35
  63. Chanvorachote, P., Nimmannit, U., Wang, L., Stehlik, C., Lu, B., Azad, N. and Rojanasakul, Y. (2005) Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein. J. Biol. Chem. 280, 42044-42050. https://doi.org/10.1074/jbc.M510080200
  64. Poukkula, M., Kaunisto, A., Hietakangas, V., Denessiouk, K., Katajamaki, T., Johnson, M. S., Sistonen, L. and Eriksson, J. E. (2005) Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J. Biol. Chem. 280, 27345-27355. https://doi.org/10.1074/jbc.M504019200
  65. Kim, Y., Suh, N., Sporn, M. and Reed, J. C. (2002) An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J. Biol. Chem. 277, 22320-22329. https://doi.org/10.1074/jbc.M202458200
  66. Perez, D. and White, E. (2003) E1A sensitizes cells to tumor necrosis factor alpha by downregulating c-FLIP S. J Virol. 77, 2651-2662. https://doi.org/10.1128/JVI.77.4.2651-2662.2003
  67. Cursi, S., Rufini, A., Stagni, V., Condo, I., Matafora, V., Bachi, A., Bonifazi, A. P., Coppola, L., Superti-Furga, G., Testi, R. and Barila, D. (2006) Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression. EMBO J. 25, 1895-1905. https://doi.org/10.1038/sj.emboj.7601085
  68. McDonald, E. R., 3rd and El-Deiry, W. S. (2004) Suppression of caspase-8- and -10-associated RING proteins results in sensitization to death ligands and inhibition of tumor cell growth. Proc. Natl. Acad. Sci. U.S.A. 101, 6170-6175. https://doi.org/10.1073/pnas.0307459101
  69. Liao, W., Xiao, Q., Tchikov, V., Fujita, K., Yang, W., Wincovitch, S., Garfield, S., Conze, D., El-Deiry, W. S., Schutze, S. and Srinivasula, S. M. (2008) CARP-2 is an endosome- associated ubiquitin ligase for RIP and regulates TNF-induced NF-kappaB activation. Curr. Biol. 18, 641-649. https://doi.org/10.1016/j.cub.2008.04.017
  70. Jesenberger, V. and Jentsch, S. (2002) Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Biol. 3, 112-121. https://doi.org/10.1038/nrm731
  71. Lee, J. C. and Peter, M. E. (2003) Regulation of apoptosis by ubiquitination. Immunol. Rev. 193, 39-47. https://doi.org/10.1034/j.1600-065X.2003.00043.x
  72. Lee, E. W., Kim, J. H., Ahn, Y. H., Seo, J., Ko, A., Jeong, M., Kim, S. J., Ro, J. Y., Park, K. M., Lee, H. W., Park, E. J., Chun, K. H. and Song, J. (2012) Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nat. Commun. 3, 978. https://doi.org/10.1038/ncomms1981
  73. Laster, S. M., Wood, J. G. and Gooding, L. R. (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 141, 2629-2634.
  74. Lin, Y., Choksi, S., Shen, H. M., Yang, Q. F., Hur, G. M., Kim, Y. S., Tran, J. H., Nedospasov, S. A. and Liu, Z. G. (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem. 279, 10822-10828. https://doi.org/10.1074/jbc.M313141200
  75. Vercammen, D., Brouckaert, G., Denecker, G., Van de Craen, M., Declercq, W., Fiers, W. and Vandenabeele, P. (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med. 188, 919-930. https://doi.org/10.1084/jem.188.5.919
  76. Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A. and Yuan, J. (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112-119. https://doi.org/10.1038/nchembio711
  77. Chan, F. K., Shisler, J., Bixby, J. G., Felices, M., Zheng, L., Appel, M., Orenstein, J., Moss, B. and Lenardo, M. J. (2003) A role for tumor necrosis factor receptor-2 and receptor- interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem. 278, 51613-51621. https://doi.org/10.1074/jbc.M305633200
  78. He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L. and Wang, X. (2009) Receptor interacting protein kinase- 3 determines cellular necrotic response to TNFalpha. Cell 137, 1100-1111. https://doi.org/10.1016/j.cell.2009.05.021
  79. Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M. and Chan, F. K. (2009) Phosphorylationdriven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123. https://doi.org/10.1016/j.cell.2009.05.037
  80. Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., Dong, M. Q. and Han, J. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336. https://doi.org/10.1126/science.1172308
  81. Ma, Y., Temkin, V., Liu, H. and Pope, R. M. (2005) NF-kappaB protects macrophages from lipopolysaccharideinduced cell death: the role of caspase 8 and receptor-interacting protein. J. Biol. Chem. 280, 41827-41834. https://doi.org/10.1074/jbc.M510849200
  82. Upton, J. W., Kaiser, W. J. and Mocarski, E. S. (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host & Microbe 7, 302-313. https://doi.org/10.1016/j.chom.2010.03.006
  83. Kalai, M., Van Loo, G., Vanden Berghe, T., Meeus, A., Burm, W., Saelens, X. and Vandenabeele, P. (2002) Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ. 9, 981-994. https://doi.org/10.1038/sj.cdd.4401051
  84. Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., Mignot, G., Maiuri, M. C., Ullrich, E., Saulnier, P., Yang, H., Amigorena, S., Ryffel, B., Barrat, F. J., Saftig, P., Levi, F., Lidereau, R., Nogues, C., Mira, J. P., Chompret, A., Joulin, V., Clavel-Chapelon, F., Bourhis, J., Andre, F., Delaloge, S., Tursz, T., Kroemer, G. and Zitvogel, L. (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050-1059. https://doi.org/10.1038/nm1622
  85. Hacker, H. and Karin, M. (2006) Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13. https://doi.org/10.1126/stke.3572006re13
  86. Hitomi, J., Christofferson, D. E., Ng, A., Yao, J., Degterev, A., Xavier, R. J. and Yuan, J. (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311-1323. https://doi.org/10.1016/j.cell.2008.10.044
  87. Laukens, B., Jennewein, C., Schenk, B., Vanlangenakker, N., Schier, A., Cristofanon, S., Zobel, K., Deshayes, K., Vucic, D., Jeremias, I., Bertrand, M. J., Vandenabeele, P. and Fulda, S. (2011) Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor alpha-induced necroptosis. Neoplasia 13, 971-979. https://doi.org/10.1593/neo.11610
  88. McComb, S., Cheung, H. H., Korneluk, R. G., Wang, S., Krishnan, L. and Sad, S. (2012) cIAP1 and cIAP2 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation. Cell Death Differ. (In press).
  89. Moulin, M., Anderton, H., Voss, A. K., Thomas, T., Wong, W. W., Bankovacki, A., Feltham, R., Chau, D., Cook, W. D., Silke, J. and Vaux, D. L. (2012) IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO J. 31, 1679-1691. https://doi.org/10.1038/emboj.2012.18
  90. Vanlangenakker, N., Bertrand, M. J., Bogaert, P., Vandenabeele, P. and Berghe, T. V. (2011) TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis. 2, e230. https://doi.org/10.1038/cddis.2011.111
  91. Micheau, O. and Tschopp, J. (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181-190. https://doi.org/10.1016/S0092-8674(03)00521-X
  92. Degterev, A., Hitomi, J., Germscheid, M., Ch'en, I. L., Korkina, O., Teng, X., Abbott, D., Cuny, G. D., Yuan, C., Wagner, G., Hedrick, S. M., Gerber, S. A., Lugovskoy, A. and Yuan, J. (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313-321. https://doi.org/10.1038/nchembio.83
  93. Duprez, L., Takahashi, N., Van Hauwermeiren, F., Vandendriessche, B., Goossens, V., Vanden Berghe, T., Declercq, W., Libert, C., Cauwels, A. and Vandenabeele, P. (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908-918. https://doi.org/10.1016/j.immuni.2011.09.020
  94. Vercammen, D., Beyaert, R., Denecker, G., Goossens, V., Van Loo, G., Declercq, W., Grooten, J., Fiers, W. and Vandenabeele, P. (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477-1485. https://doi.org/10.1084/jem.187.9.1477
  95. Bohgaki, T., Mozo, J., Salmena, L., Matysiak-Zablocki, E., Bohgaki, M., Sanchez, O., Strasser, A., Hakem, A. and Hakem, R. (2011) Caspase-8 inactivation in T cells increases necroptosis and suppresses autoimmunity in Bim-/- mice. J. Cell Biol. 195, 277-291. https://doi.org/10.1083/jcb.201103053
  96. Gunther, C., Martini, E., Wittkopf, N., Amann, K., Weigmann, B., Neumann, H., Waldner, M. J., Hedrick, S. M., Tenzer, S., Neurath, M. F. and Becker, C. (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477, 335-339. https://doi.org/10.1038/nature10400
  97. Schulze-Osthoff, K., Bakker, A. C., Vanhaesebroeck, B., Beyaert, R., Jacob, W. A. and Fiers, W. (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317-5323.
  98. Antosiewicz, J., Ziolkowski, W., Kaczor, J. J. and Herman-Antosiewicz, A. (2007) Tumor necrosis factor-alpha- induced reactive oxygen species formation is mediated by JNK1-dependent ferritin degradation and elevation of labile iron pool. Free Radic. Biol. Med. 43, 265-270. https://doi.org/10.1016/j.freeradbiomed.2007.04.023
  99. Xie, C., Zhang, N., Zhou, H., Li, J., Li, Q., Zarubin, T., Lin, S. C. and Han, J. (2005) Distinct roles of basal steady-state and induced H-ferritin in tumor necrosis factor- induced death in L929 cells. Mol. Cell Biol. 25, 6673-6681. https://doi.org/10.1128/MCB.25.15.6673-6681.2005
  100. Murthy, C. R., Rama Rao, K. V., Bai, G. and Norenberg, M. D. (2001) Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J. Neurosci. Res. 66, 282-288. https://doi.org/10.1002/jnr.1222
  101. Van Herreweghe, F., Mao, J., Chaplen, F. W., Grooten, J., Gevaert, K., Vandekerckhove, J. and Vancompernolle, K. (2002) Tumor necrosis factor-induced modulation of glyoxalase I activities through phosphorylation by PKA results in cell death and is accompanied by the formation of a specific methylglyoxal-derived AGE. Proc. Natl. Acad. Sci. U.S.A. 99, 949-954. https://doi.org/10.1073/pnas.012432399
  102. Albrecht, J. and Norenberg, M. D. (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44, 788-794. https://doi.org/10.1002/hep.21357
  103. Soldani, C. and Scovassi, A. I. (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7, 321-328. https://doi.org/10.1023/A:1016119328968
  104. Saelens, X., Festjens, N., Parthoens, E., Vanoverberghe, I., Kalai, M., van Kuppeveld, F. and Vandenabeele, P. (2005) Protein synthesis persists during necrotic cell death. J. Cell Biol. 168, 545-551. https://doi.org/10.1083/jcb.200407162
  105. Sun, X. M., Butterworth, M., MacFarlane, M., Dubiel, W., Ciechanover, A. and Cohen, G. M. (2004) Caspase activation inhibits proteasome function during apoptosis. Mol. Cell 14, 81-93. https://doi.org/10.1016/S1097-2765(04)00156-X
  106. Los, M., Mozoluk, M., Ferrari, D., Stepczynska, A., Stroh, C., Renz, A., Herceg, Z., Wang, Z. Q. and Schulze-Osthoff, K. (2002) Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell 13, 978-988. https://doi.org/10.1091/mbc.01-05-0272
  107. Benedetti, A., Comporti, M. and Esterbauer, H. (1980) Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim. Biophys. Acta. 620, 281-296. https://doi.org/10.1016/0005-2760(80)90209-X
  108. Orrenius, S., Gogvadze, V. and Zhivotovsky, B. (2007) Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47, 143-183. https://doi.org/10.1146/annurev.pharmtox.47.120505.105122
  109. Won, J. S. and Singh, I. (2006) Sphingolipid signaling and redox regulation. Free Radic. Biol. Med. 40, 1875-1888. https://doi.org/10.1016/j.freeradbiomed.2006.01.035
  110. Kagedal, K., Zhao, M., Svensson, I. and Brunk, U. T. (2001) Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335-343. https://doi.org/10.1042/0264-6021:3590335
  111. Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W., Lei, X. and Wang, X. (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213-227. https://doi.org/10.1016/j.cell.2011.11.031
  112. Wang, Z., Jiang, H., Chen, S., Du, F. and Wang, X. (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148, 228-243. https://doi.org/10.1016/j.cell.2011.11.030
  113. Yeh, W. C., Pompa, J. L., McCurrach, M. E., Shu, H. B., Elia, A. J., Shahinian, A., Ng, M., Wakeham, A., Khoo, W., Mitchell, K., El-Deiry, W. S., Lowe, S. W., Goeddel, D. V. and Mak, T. W. (1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954-1958. https://doi.org/10.1126/science.279.5358.1954
  114. Zhang, J., Cado, D., Chen, A., Kabra, N. H. and Winoto, A. (1998) Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296-300. https://doi.org/10.1038/32681
  115. Bodmer, J. L., Holler, N., Reynard, S., Vinciguerra, P., Schneider, P., Juo, P., Blenis, J. and Tschopp, J. (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat. Cell Biol. 2, 241-243. https://doi.org/10.1038/35008667
  116. Kischkel, F. C., Lawrence, D. A., Chuntharapai, A., Schow, P., Kim, K. J. and Ashkenazi, A. (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611-620. https://doi.org/10.1016/S1074-7613(00)80212-5
  117. Sprick, M. R., Weigand, M. A., Rieser, E., Rauch, C. T., Juo, P., Blenis, J., Krammer, P. H. and Walczak, H. (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599-609. https://doi.org/10.1016/S1074-7613(00)80211-3
  118. Irrinki, K. M., Mallilankaraman, K., Thapa, R. J., Chandramoorthy, H. C., Smith, F. J., Jog, N. R., Gandhirajan, R. K., Kelsen, S. G., Houser, S. R., May, M. J., Balachandran, S. and Madesh, M. (2011) Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis. Mol. Cell Biol. 31, 3745-3758. https://doi.org/10.1128/MCB.05303-11
  119. Oberst, A., Dillon, C. P., Weinlich, R., McCormick, L. L., Fitzgerald, P., Pop, C., Hakem, R., Salvesen, G. S. and Green, D. R. (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363-367. https://doi.org/10.1038/nature09852
  120. Jin, Z. and El-Deiry, W. S. (2006) Distinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis. Mol. Cell Biol. 26, 8136-8148. https://doi.org/10.1128/MCB.00257-06
  121. Vercammen, D., Vandenabeele, P., Beyaert, R., Declercq, W. and Fiers, W. (1997) Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 9, 801-808. https://doi.org/10.1006/cyto.1997.0252
  122. Vanlangenakker, N., Vanden Berghe, T. and Vandenabeele, P. (2012) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ. 19, 75-86. https://doi.org/10.1038/cdd.2011.164
  123. He, S., Liang, Y., Shao, F. and Wang, X. (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc. Natl. Acad. Sci. U.S.A. 108, 20054-20059. https://doi.org/10.1073/pnas.1116302108
  124. Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M. and Tschopp, J. (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5, 503-507. https://doi.org/10.1038/ni1061
  125. Upton, J. W., Kaiser, W. J. and Mocarski, E. S. (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host & Microbe 11, 290-297. https://doi.org/10.1016/j.chom.2012.01.016
  126. Rebsamen, M., Heinz, L. X., Meylan, E., Michallet, M. C., Schroder, K., Hofmann, K., Vazquez, J., Benedict, C. A. and Tschopp, J. (2009) DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep. 10, 916-922. https://doi.org/10.1038/embor.2009.109
  127. Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D. P., Langlais, C., Hupe, M., Cain, K., MacFarlane, M., Hacker, G. and Leverkus, M. (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449-463. https://doi.org/10.1016/j.molcel.2011.06.011
  128. Tenev, T., Bianchi, K., Darding, M., Broemer, M., Langlais, C., Wallberg, F., Zachariou, A., Lopez, J., MacFarlane, M., Cain, K. and Meier, P. (2011) The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432-448. https://doi.org/10.1016/j.molcel.2011.06.006
  129. Shen, H. M., Lin, Y., Choksi, S., Tran, J., Jin, T., Chang, L., Karin, M., Zhang, J. and Liu, Z. G. (2004) Essential roles of receptor-interacting protein and TRAF2 in oxidative stress-induced cell death. Mol. Cell Biol. 24, 5914-5922. https://doi.org/10.1128/MCB.24.13.5914-5922.2004
  130. Newton, K., Harris, A. W., Bath, M. L., Smith, K. G. and Strasser, A. (1998) A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J. 17, 706-718. https://doi.org/10.1093/emboj/17.3.706
  131. Walsh, C. M., Wen, B. G., Chinnaiyan, A. M., O'Rourke, K., Dixit, V. M. and Hedrick, S. M. (1998) A role for FADD in T cell activation and development. Immunity 8, 439-449. https://doi.org/10.1016/S1074-7613(00)80549-X
  132. Kabra, N. H., Kang, C., Hsing, L. C., Zhang, J. and Winoto, A. (2001) T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc. Natl. Acad. Sci. U.S.A. 98, 6307-6312. https://doi.org/10.1073/pnas.111158698
  133. Osborn, S. L., Sohn, S. J. and Winoto, A. (2007) Constitutive phosphorylation mutation in Fas-associated death domain (FADD) results in early cell cycle defects. J. Biol. Chem. 282, 22786-22792. https://doi.org/10.1074/jbc.M703163200
  134. Imtiyaz, H. Z., Zhou, X., Zhang, H., Chen, D., Hu, T. and Zhang, J. (2009) The death domain of FADD is essential for embryogenesis, lymphocyte development, and proliferation. J. Biol. Chem. 284, 9917-9926. https://doi.org/10.1074/jbc.M900249200
  135. Osborn, S. L., Diehl, G., Han, S. J., Xue, L., Kurd, N., Hsieh, K., Cado, D., Robey, E. A. and Winoto, A. (2010) Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis. Proc. Natl. Acad. Sci. U.S.A. 107, 13034-13039. https://doi.org/10.1073/pnas.1005997107
  136. Bell, B. D., Leverrier, S., Weist, B. M., Newton, R. H., Arechiga, A. F., Luhrs, K. A., Morrissette, N. S. and Walsh, C. M. (2008) FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc. Natl. Acad. Sci. U.S.A. 105, 16677-16682. https://doi.org/10.1073/pnas.0808597105
  137. Kaiser, W. J., Upton, J. W., Long, A. B., Livingston-Rosanoff, D., Daley-Bauer, L. P., Hakem, R., Caspary, T. and Mocarski, E. S. (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368-372. https://doi.org/10.1038/nature09857
  138. Ch'en, I. L., Tsau, J. S., Molkentin, J. D., Komatsu, M. and Hedrick, S. M. (2011) Mechanisms of necroptosis in T cells. J. Exp. Med. 208, 633-641. https://doi.org/10.1084/jem.20110251

Cited by

  1. The role of autophagy in the intracellular survival ofCampylobacter concisus vol.4, pp.1, 2014, https://doi.org/10.1016/j.fob.2014.03.008
  2. Interplay between autophagy and programmed cell death in mammalian neural stem cells vol.46, pp.8, 2013, https://doi.org/10.5483/BMBRep.2013.46.8.164
  3. Effect of UVC radiation on mouse fibroblasts deficient for FAS-associated protein with death domain vol.92, pp.8, 2016, https://doi.org/10.1080/09553002.2016.1186298
  4. Protective effect of mild-induced hypothermia against moderate traumatic brain injury in rats involved in necroptotic and apoptotic pathways vol.31, pp.3, 2017, https://doi.org/10.1080/02699052.2016.1225984
  5. USP11-dependent selective cIAP2 deubiquitylation and stabilization determine sensitivity to Smac mimetics vol.22, pp.9, 2015, https://doi.org/10.1038/cdd.2014.234
  6. Cyclosporine A Regulates Pro-Inflammatory Cytokine Production in Ulcerative Colitis vol.63, pp.1, 2015, https://doi.org/10.1007/s00005-014-0309-7
  7. The CD95/CD95L signaling pathway: A role in carcinogenesis vol.1846, pp.1, 2014, https://doi.org/10.1016/j.bbcan.2014.04.007
  8. Structural determinants of DISC function: New insights into death receptor-mediated apoptosis signalling vol.140, pp.2, 2013, https://doi.org/10.1016/j.pharmthera.2013.06.009
  9. CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3 vol.18, pp.3, 2016, https://doi.org/10.1038/ncb3314
  10. Autophagy and apoptosis dysfunction in neurodegenerative disorders vol.112, 2014, https://doi.org/10.1016/j.pneurobio.2013.10.004
  11. Induction of apoptosis in cervical carcinoma HeLa cells by Petasites japonicus ethanol extracts vol.24, pp.2, 2015, https://doi.org/10.1007/s10068-015-0087-y
  12. Role of autophagy and its significance in cellular homeostasis vol.98, pp.12, 2014, https://doi.org/10.1007/s00253-014-5721-8
  13. Fatty acid synthase–associated protein with death domain: a prognostic factor for survival in patients with nasopharyngeal carcinoma vol.45, pp.12, 2014, https://doi.org/10.1016/j.humpath.2014.08.010
  14. Improved therapeutic efficacy of mammalian expressed-recombinant interferon gamma against ovarian cancer cells vol.359, pp.1, 2017, https://doi.org/10.1016/j.yexcr.2017.08.014
  15. Protective effects of arjunolic acid against cardiac toxicity induced by oral sodium nitrite: Effects on cytokine balance and apoptosis vol.111, pp.1-2, 2014, https://doi.org/10.1016/j.lfs.2014.07.002
  16. CD8+CD122+CD49dlowregulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity vol.113, pp.9, 2016, https://doi.org/10.1073/pnas.1525098113
  17. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death vol.140, 2017, https://doi.org/10.1016/j.bcp.2017.06.112
  18. Autophagy and apoptosis: where do they meet? vol.19, pp.4, 2014, https://doi.org/10.1007/s10495-014-0967-2
  19. Identification of the novel substrates for caspase-6 in apoptosis using proteomic approaches vol.46, pp.12, 2013, https://doi.org/10.5483/BMBRep.2013.46.12.081
  20. Thymoquinone ameliorates testicular tissue inflammation induced by chronic administration of oral sodium nitrite vol.48, pp.5, 2016, https://doi.org/10.1111/and.12469
  21. ZFP36 stabilizes RIP1 via degradation of XIAP and cIAP2 thereby promoting ripoptosome assembly vol.15, pp.1, 2015, https://doi.org/10.1186/s12885-015-1388-5
  22. Oleifolioside B-mediated autophagy promotes apoptosis in A549 human non-small cell lung cancer cells vol.43, pp.6, 2013, https://doi.org/10.3892/ijo.2013.2143
  23. PIDD mediates and stabilizes the interaction between RAIDD and Caspase-2 for the PIDDosome assembly vol.46, pp.9, 2013, https://doi.org/10.5483/BMBRep.2013.46.9.021
  24. Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells vol.19, pp.12, 2014, https://doi.org/10.1007/s10495-014-1036-6
  25. Protective effects of paeoniflorin against FasL-induced apoptosis of intervertebral disc annulus fibrosus cells via Fas-FasL signalling pathway vol.10, pp.6, 2015, https://doi.org/10.3892/etm.2015.2776
  26. β-Amyloid induces nuclear protease-mediated lamin fragmentation independent of caspase activation vol.1863, pp.6, 2016, https://doi.org/10.1016/j.bbamcr.2016.02.008
  27. Induction of apoptosis by a hexane extract of aged black garlic in the human leukemic U937 cells vol.8, pp.2, 2014, https://doi.org/10.4162/nrp.2014.8.2.132
  28. Lysis of human neutrophils by community-associated methicillin-resistant Staphylococcus aureus vol.129, pp.24, 2017, https://doi.org/10.1182/blood-2017-02-766253
  29. Simultaneous induction of apoptosis and necroptosis by Tanshinone IIA in human hepatocellular carcinoma HepG2 cells vol.2, 2016, https://doi.org/10.1038/cddiscovery.2016.65
  30. Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways vol.46, pp.12, 2013, https://doi.org/10.5483/BMBRep.2013.46.12.133
  31. T Cells and dendritic cells in refractory Lyme arthritis vol.97, pp.4, 2015, https://doi.org/10.1189/jlb.2RU0714-343RR
  32. Negative regulators of cell death pathways in cancer: perspective on biomarkers and targeted therapies vol.23, pp.2, 2018, https://doi.org/10.1007/s10495-018-1440-4
  33. Loss of the E3 ubiquitin ligase MKRN1 represses diet-induced metabolic syndrome through AMPK activation vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-05721-4
  34. Pancreatic Beta Cell Death: Novel Potential Mechanisms in Diabetes Therapy vol.2018, pp.2314-6753, 2018, https://doi.org/10.1155/2018/9601801
  35. Anti-Apoptotic Mechanisms of Acupuncture in Neurological Diseases: A Review vol.46, pp.03, 2018, https://doi.org/10.1142/S0192415X1850026X
  36. TRAF6 Affects RAC1 Expression and Apoptosis in SK-Hep1 Cells vol.09, pp.04, 2018, https://doi.org/10.4236/cm.2018.94011
  37. Effect of IRAK1 on Apoptosis and Necroptosis of Hepatoma Cell Line SK-Hep1 vol.10, pp.01, 2019, https://doi.org/10.4236/cm.2019.101003