DOI QR코드

DOI QR Code

Functional Analysis of Bacillus subtilis Isolates and Biological Control of Red Pepper Powdery Mildew Using Bacillus subtilis R2-1

Bacillus subtilis 균주의 기능성 분석 및 이를 활용한 고추 흰가루병 방제

  • Kim, Yong-Ki (Organic Agriculture Division, Department of Agricultural Environment, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Hong, Sung-Jun (Organic Agriculture Division, Department of Agricultural Environment, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Shim, Chang-Ki (Organic Agriculture Division, Department of Agricultural Environment, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Min-Jeong (Organic Agriculture Division, Department of Agricultural Environment, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Choi, Eun-Jung (Organic Agriculture Division, Department of Agricultural Environment, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Min-Ho (Organic Agriculture Division, Department of Agricultural Environment, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Park, Jong-Ho (Organic Agriculture Division, Department of Agricultural Environment, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Han, Eun-Jung (Organic Agriculture Division, Department of Agricultural Environment, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • An, Nan-Hee (Organic Agriculture Division, Department of Agricultural Environment, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Jee, Hyeong-Jin (Organic Agriculture Division, Department of Agricultural Environment, National Academy of Agricultural Sciences, Rural Development Administration)
  • 김용기 (국립농업과학원 유기농업과) ;
  • 홍성준 (국립농업과학원 유기농업과) ;
  • 심창기 (국립농업과학원 유기농업과) ;
  • 김민정 (국립농업과학원 유기농업과) ;
  • 최은정 (국립농업과학원 유기농업과) ;
  • 이민호 (국립농업과학원 유기농업과) ;
  • 박종호 (국립농업과학원 유기농업과) ;
  • 한은정 (국립농업과학원 유기농업과) ;
  • 안난희 (국립농업과학원 유기농업과) ;
  • 지형진 (국립농업과학원 유기농업과)
  • Received : 2012.09.12
  • Accepted : 2012.09.24
  • Published : 2012.09.30

Abstract

The multi-function of 18 Bacillus subtilis isolates collected from agricultural extension centers of local government and National Academy of Agricultural Science was investigated by measuring their antifungal activities against five plant pathogens, such as Rhizoctonia solani, Colletotrichum acutatum, Fusarium oxysporum, Magnaporthe oryzae and Phytophthora capsici, phosphorus solubilization ability, production of indole acetic acid (IAA) and siderophore, and nitrogen fixation. The B. subtilis isolates showed antifungal activity against several plant pathogens and nitrogen fixation activity, and produced siderophore and IAA. They could control pepper powdery mildew (Leveillula taurica), but there was no difference in control efficacy among the B. subtilis isolates. In fields, the control efficacy of B. subtilis R2-1 ($10^8$ cells/ml) was compared with two microbial fungicides, Q-pect and Topsid. In 2009, the control efficacy of B. subtilis R2-1 (37.7%) was lower than that of Topsid (47.6%), but higher than that of Q-pect (25.7%). In 2010, the control efficacy of B. subtilis R2-1 (83.3%) was higher than that of Topsid (67.9%). In order to elucidate mode of action of B. subtilis R2-1 for controlling pepper powdery mildew, spore germination rates of pepper powdery mildew pathogen collected on treated leaves was investigated when suspensions of B. subtilis R2-1 and two microbial fungicides (Q-pect and Topsid) were foliar-sprayed. They highly suppressed spore germination of the pathogen with inhibition values of 84.2% for B. subtilis R2-1, 97.9% for Q-pect and 94.7% for Topsid. Further study on the mass-culturing method and formulation is needed for development of a microbial fungicide.

지자체 농업기술센터와 농과원에서 수집한 18개의 Bacillus subtilis 균주들이 보유하고 있는 기능성을 구명하기 위하여 항균활성을 비롯한 사이데로포아 생산, 질소고정능력, 인산가용화 능력 및 오옥신 생성능력을 조사하였다. B. subtilis 균주들은 대부분 입고병균(R. solani), 고추 탄저병균(C. acutatum), 채소류 시들음병균(F. oxysporum), 벼도열병균(M. oryzae), 고추 역병균(P. capsici)에 대하여 항균활성을 보였다. 대부분의 균주가 Siderophore와 오옥신 생성능력을 보였으며 질소고정능력도 함께 보유하고 있는 것으로 나타났다. 인산가용화능은 조사한 Bacillus 속 균주 중 단 한 균주에서 활성을 보였다. 대부분의 B. subtilis 균주가 고추 흰가루병 억제효과를 보였으나, 균주 간에는 방제효과에 있어서 큰 차이를 보이지 않았다. B. subtilis R2-1균주의 농업현장에서의 활용 가능성을 구명하기 위하여 2009년도에 강원도 화천의 유기재배농가에서 오이 흰가루병 방제용 미생물 농약으로 등록되어 사용되고 있는 '큐펙트'와 '탑시드'를 대조로 하여 방제효과를 검정하였다. 2009년도에 B. subtilis R2-1 처리시 방제효과는 37.7%로 '탑시드'(47.6%)보다는 낮았으나, '큐펙트'(25.7%)에 비해서는 높았다. 2010년도에는 B. subtilis R2-1의 고추 흰가루병 방제효과가 83.3%로 미생물 농약인 탑시드 보다도 높게 나타났다. B. subtilis R2-1균주의 발병억제 기작을 구명하기 위하여 B. subtilis R2-1균주와 미생물 농약(탑시드, 큐펙트)을 경엽 처리한 후 포자발아율을 계수한 결과, 미생물 농약인 큐펙트는 97.9%, 탑시드는 94.7% 억제하는데 비해서 B. subtilis R2-1균주는 84.2% 억제하는 것으로 나타났다. 앞으로 B. subtilis R2-1을 고농도로 배양할 수 있는 대량배양기술을 개발하고 항균활성 기능이 잘 발현되도록 제형화한다면 생물농약으로의 개발이 가능할 것으로 사료된다.

Keywords

References

  1. Ahlawat, S., Mandham, R. P., Dhiman, S. S., Kumar, R. and Sharma, J. 2008. Potential application of alkaline pectinase from Bacillus subtilis SS in pulp and paper industry. Appl. Biochem. Biotechnol. 149: 287-293. https://doi.org/10.1007/s12010-007-8096-9
  2. Anonymous. 2011. Management of powdery mildew, Leveillula taurica, in green house peppers (http://www.afg,gov.bc.ca)
  3. Asaka, O. and Shoda, M. 1996. Bio-control of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62: 4081-4085.
  4. Berger, F., Li, H., Qhite, D., Frazer, R. and Leifert, C. 1996. Effect of pathogen inoculum, antagonist density and plant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilis cot1 in high-humidity fogging glasshouses. Phytopathology 86: 428-433. https://doi.org/10.1094/Phyto-86-428
  5. Crisp, P., Wicks, T., Bruer, D. and Scott, E. 2006. An evaluation of biological controls for grapevine powdery mildew. Aust. J. Grape Wine Res. 12: 203-211. https://doi.org/10.1111/j.1755-0238.2006.tb00060.x
  6. Ding, Y., Wang, J., Liu, Y. and Chen, S. 2005. Isolation and identification of nitrogen- fixing bacilli from plant rhizosphere in Beijing region. J. Appl. Microbiol. 99: 1271-1281. https://doi.org/10.1111/j.1365-2672.2005.02738.x
  7. Feio, S. S., Barbosa, A., Cabrita, M., Nunes, L., Esteves, A., Roseiro, J. C. and Curto, M. J. M. 2004. Antifungal activity of Bacillus subtilis 355 against wood-surface contaminant fungi. J. Ind. Microbiol. Biotechnol. 31: 199-203. https://doi.org/10.1007/s10295-004-0133-x
  8. Grossman, T. H., Tuckman, M., Elletad, S. and Osburne, M. S. 1993. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: Relationship between Bacillus subtilis and E. coli entD genes. J. Bacteriol. 175: 6203-6211. https://doi.org/10.1128/jb.175.19.6203-6211.1993
  9. Hegazi, M. A. and El-Kot, G. A. 2010. Biological control of powdery mildew on Zinnia using some bio-control agents and plant extract. J. Agric. Sci. 2: 221-228.
  10. Hoitink, H. A. J. and Boehm, M. J. 1999. Bio-control within the context of soil microbial communities: A substrate-dependent phenomenon. Annu. Rev. Phytopathol. 37: 427-446. https://doi.org/10.1146/annurev.phyto.37.1.427
  11. Jadhav, G. G., Salunkhe, D. S., Nerkar, D. P. and Bhadekar, R. K. 2010. Isolation and characterization of salt-tolerant nitrogenfixing microorganisms from food. Eur. Asia J. BioSci 4: 33-40.
  12. Janousek, C. N., Lorber, J. D. and Gubler, W. D. 2009. Combination and rotation of bacterial antagonists to control powdery mildew on Pumpkin. J. Plant Dis. Prot. 116: 260-262. (Short communication) https://doi.org/10.1007/BF03356320
  13. Jeon, J. S., Lee, S. S., Kim, H. Y., Ahn, T. S. and Song, H. G. 2003. Plant growth promotion in soil by some inoculated microorganisms. J. Microbiol. 41: 271-276.
  14. Jeong, J. H., Jeon, Y. D., Lee, O. M., Kim, J. D., Lee, N. R., Park, G. T. and Son, H. J. 2010. Characterization of multi-functional feather-degrading Bacillus subtilis isolated from forest soil. Biodegradation 21: 1029-1040. https://doi.org/10.1007/s10532-010-9363-y
  15. Kanimozhi, K. and Panneerselvam, A. 2010. Studies on isolation and nitrogen fixation ability of Azospirillium spp. isolated from Thanjavur district. Der Chemica Sinica 1: 138-145.
  16. Khan, A. A., Jilani, G. M., Akhtar, S., Naqvi, S. M. S. and Rasheed, M. 2009. Phosphorus-solubilizing bacteria: occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1: 48-58.
  17. Melo-Pereira, G. V., Magalhaes, K. T., Lorenzetii, E. R., Souza, T. P. and Schwan, R. F. 2012. A multi-phasic approach for the identification of endo-phytic bacterial in strawberry fruit and their potential for plant growth promotion. Microbial Ecol. 63: 405-417. https://doi.org/10.1007/s00248-011-9919-3
  18. Milagres, A. M. F., Machuca, A. and Napoleao, D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Met. 37: 1-6. https://doi.org/10.1046/j.1365-2958.2000.01941.x
  19. National Institute of Agricultural Science and Technology. 1977. Compendium of vegetable diseases with color plates. Sammi Press, Seoul, Korea. 447 pp. (In Korean)
  20. Pandey, A., Bringel, F. and Meyer, J. M. 1994. Iron requirement and search for siderophores in lactic acid bacteria. Appl. Microbiol. Biotechnol. 40: 735-739. https://doi.org/10.1007/BF00173337
  21. Prashanth, S. and Mathivanan, N. 2010. Growth promotion of groundnut by IAA producing bacteria Bacillus licheniformus. MML2501. Arch. Phytopathol. Plant Prot. 43: 191-208. https://doi.org/10.1080/03235400802404734
  22. Raj, J., Bagyaraj, D. J. and Manjunath, A. 1981. Influence of soil inoculation with vesicular-arbuscular mycorrhiza and a phosphate-dissolving bacterium on plant growth and P-uptake. Soil Biol. Biochem. 13: 105-108. https://doi.org/10.1016/0038-0717(81)90004-3
  23. Raudales, R. E. and Gardener, B. B. M. 2008. Microbial biopesticides for the control of plant diseases in organic farming. Agriculture and Natural resources (Fact sheet). Ohio State University. 5 pp.
  24. Romero, D., Vicente, A., Zeriouh, H., Cazorla, F. M., Fernandez-Orouno, D., Tores, J. A. and Perez-Garcia, A. 2007. Evaluation of biological control agents for managing cucurbit powdey mildew on greenhouse-grown melon. Plant Pathol. 56: 976-986. https://doi.org/10.1111/j.1365-3059.2007.01684.x
  25. Schwyn, B. and Neilands, J. B. 1997. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 46-56.
  26. Sgroy, V., Cassan, F., Masciarelli, O., Papa, M. F. D. and Lagares, A. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis- regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Cell Physiol. 85: 371-381.
  27. Swain, M. R. and Ray, R. C. 2008a. Optimization of cultural conditions and their statistical interpretation for production of indole-3-acetic acid by Bacillus subtilis CM5 using cassava fibrous residue. J. Sci. Ind. Res. 67: 622-628.
  28. Swain, M. R. and Ray, R. C. 2009. Bio-control and other beneficial activities of Bacillus subtilis isolated from cow dung microflora. Microbiol. Res. 164: 121-130. https://doi.org/10.1016/j.micres.2006.10.009
  29. Swain, M. R., Ray, R. C. and Nautiyal, C. S. 2008b. Bio-control efficacy of Bacillus subtilis strains isolated from cow dung against postharvest yam pathogens. Curr. Microbiol. 57: 407-411. https://doi.org/10.1007/s00284-008-9213-x
  30. Todorova, S. and Kozhuharova, L. 2010. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World J. Microbiol. Biotechnol. 26: 1207-1216. https://doi.org/10.1007/s11274-009-0290-1
  31. Woo, S. M. and Kim, S. D. 2008. Structural identification of siderophore from Bacillus subtilis AH18, a biocontrol agent of Phytophthora blight disease in red pepper. Korean J. Microbiol. Biotechnol. 36: 326-335.
  32. Zaidi, S., Usmani, S., Singh, B. R. and Musarrat, J. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997. https://doi.org/10.1016/j.chemosphere.2005.12.057
  33. Zlotnikov, A. K., Shapovalova, Y. N. and Makarov, A. A. 2001. Association of Bacillus firmus E3 and Klebsiella terrigena E6 with increased ability for nitrogen fixation. Soil Biol. Biochem. 33: 1525-1530. https://doi.org/10.1016/S0038-0717(01)00070-0
  34. Zongzheng, Y., Xin, L., Zhong, L., Jinzhhao, P., Jin, Q. and Wenyan, Y. 2009. Effect of Bacillus subtilis SY1 on antifungal activity and plant growth. Int'l J. Agric. Biol. Eng. 2: 33-61.

Cited by

  1. Investigation on Water Purification Effect Through Long-Term Continuous Flow Test of Porous Concrete Using Effective Microorganisms vol.26, pp.2, 2014, https://doi.org/10.4334/JKCI.2014.26.2.219
  2. Screening of Antagonistic Bacteria having Antifungal Activity against Various Phytopathogens vol.42, pp.4, 2014, https://doi.org/10.4489/KJM.2014.42.4.333
  3. Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea vol.31, pp.2, 2015, https://doi.org/10.5423/PPJ.OA.03.2015.0036
  4. Yield Loss Assessment and Determination of Control Thresholds for Powdery Mildew of Eggplant (Solanum melongena) vol.20, pp.2, 2016, https://doi.org/10.7585/kjps.2016.20.2.145
  5. Biological Control of Tomato and Red Pepper Powdery Mildew using Paenibacillus polymyxa CW vol.17, pp.4, 2013, https://doi.org/10.7585/kjps.2013.17.4.379
  6. Observation of Growth Inhibition of Elsinoe fawcettii on Satsuma Mandarin Leaves Pre-treated with Rhizobacterial Strains by a Scanning Electron Microscope vol.22, pp.1, 2016, https://doi.org/10.5423/RPD.2016.22.1.1
  7. Effect of Kluyvera sp. CL-2 on Sugar contents of Watermelon and Soil Chemical Properties vol.26, pp.4, 2018, https://doi.org/10.11625/KJOA.2018.26.4.677