DOI QR코드

DOI QR Code

Clay Mineral Distribution and Characteristics in the Southeastern Yellow Sea Mud Deposits

황해 남동 이질대 퇴적물의 점토광물분포 및 특성

  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yi, Hi-Il (Marine Geoenvironment Research Division, Korea Ocean Research and Development Institute)
  • 조현구 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 이희일 (한국해양연구원 해양환경특성연구사업단)
  • Received : 2012.09.13
  • Accepted : 2012.09.19
  • Published : 2012.09.28

Abstract

In this study, we determined the relative clay mineral composition of 51 surface sediments from SEYSM (Southeastern Yellow Sea Mud) (northern part 25, southern part 26) and 30 river sediments inflow to Yellow Sea using the semi-quantitative X-ray diffraction analyses. In addition to we analyzed illite characteristics of the same samples. The clay-mineral assemblage is composed of illite (61~75%), chlorite (14~24%), kaolinite (9~14%), and smectite (1~7%), in decreasing order. The average composition of each clay mineral is not different from northern part to southern part of SEYSM except a little higher kaolinite and lower smectite content in northern part. Smectite content generally has reverse relationship with illite content. Mineralogical characteristics of illite such as illite crystallinity index also is not different between two areas and show very narrow range (0.18~0.24 ${\Delta}^{\circ}2{\theta}$). Our results reveal that clay mineral composition and illite characteristics are nearly the same between northern and southern part of SEYSM. Characteristics of surface sediments in SEYSM is closer to Korean river sediments than Chinese Hanghe sediments, however it is necessary to investigate further study including Yangtze river sediments. This study conclude that most of surface sediments in SEYSM attribute to the supply of considerable amount of sediments from the nearby Korean rivers. The large sediment budget and high accumulation rate in the SEYSM can be explained by erosion and reworking of surface sediments in this area. Tidal and regional current system around SEYSM might contribute these erosional and depositional regimes.

황해 남동 이질대 51정점(북부 25정점, 남부 25정점)에서 채취된 표층퇴적물과 황해로 유입되는 하천퇴적물 30정점에 대해서 반정량 X선회절분석법에 의하여 점토광물의 상대조성을 구하였으며 일라이트의 광물학적 특성에 대해서도 조사하였다. 점토광물 조성은 일라이트(61~75%), 녹니석(14~24%), 카올리나이트(9~14%), 스멕타이트(1~7%) 순으로 존재한다. 황해 남동 이질대의 북부 지역에서 카올리나이트 함량이 약간 높고, 스멕타이트 함량이 낮은 점을 제외하면, 북부와 남부 지역에서 점토광물 조성은 특별한 차이가 없다. 스멕타이트 함량은 일라이트 함량과 대체적으로 음의 상관관계를 가진다. 일라이트의 광물학적 특징들인 일라이트 결정도(0.18~0.24 ${\Delta}^{\circ}2{\theta}$) 역시 북부와 남부 사이에 차이가 없으며, 매우 좁은 범위 내에 속한다. 이번 연구 결과는 황해 남동 이질대의 북부와 남부 퇴적물은 점토광물조성과 일라이트 특성이 거의 유사함을 지시한다. 황해 남동 이질대 퇴적물은 중국의 황하퇴적물보다 한국의 하천퇴적물과 유사한 특성을 가지지만, 추후 양쯔강 퇴적물을 포함한 조사가 필요할 것으로 판단된다. 점토광물 조성으로부터 황해 남동 이질대 퇴적물은 한국 서해안으로 유입되는 하천으로부터 매우 많은 양이 유래한 것으로 판단된다. 황해 남동 이질대의 매우 많은 퇴적물 공급량과 높은 퇴적 속도는 퇴적물들의 침식과 재동에 의한 것으로 간주된다. 황해 남동 이질대 주변의 조류와 지역적인 해류가 이 지역의 침식과 퇴적 과정에 중요한 영향을 미친 것으로 판단된다.

Keywords

References

  1. Abad, I. (2007) Physical meaning and applications of the illite Kubler index: measuring reaction progress in low-grade metamorphism. Seminarios de la Sociedad Espanola de Mineralogia, 3, 53-64.
  2. Alexander, C.R., DeMaster, D.J., and Nittrouer, C.A. (1991) Sediment accumulation in a modern epicontinental shelf setting: the Yellow Sea. Mar. Geol., 98, 51-72. https://doi.org/10.1016/0025-3227(91)90035-3
  3. Biscaye, P.E. (1965) Mineralogy and sedimentation of clay minerals in recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  4. Chamley, H. (1989) Clay Sedimentology. Berlin: Springer, pp. 1-623.
  5. Cho, H.G., Kim, S.-O., Yi, H.-Y., and Shin, K.-H. (2011) Mineral Distribution in the Southeastern Yellow Sea Surface Sediments; KORDI Cruise Samples in 2010. J. Miner. Soc. Korea, 24(3), 205-216. (Korean with English abstract). https://doi.org/10.9727/jmsk.2011.24.3.205
  6. Cho, Y.G., Lee, C.B., and Choi, M.S. (1999) Geochemistry of surface sediments off the southern and western coasts of Korea. Mar. Geol., 159, 111-129. https://doi.org/10.1016/S0025-3227(98)00194-7
  7. Choi, J.-Y., Lim, D.-I., Park, C.-H., and Kim, S.-Y. (2010) Characteristics of clay mineral compositions in river sediments around the Yellow Sea and its application to the provenance of the continental shelf mud deposit. Jour. Geol. Soc. Korea, 46(5), 497-509. (Korean with English abstract)
  8. Chough, S.K. and Kim, D.C. (1981) Dispersal of finegrained sediments in the southeastern Yellow Sea: a steady-state model. J. Sedi. Petrol., 51, 721-728.
  9. Chough, S.K., Kim, J.W., Lee, S.H., Shinn, Y.J., Jin, J.H., Suh, M.C., and Lee, J.S. (2002) High-resolution acoustic characteristics of epicontinental epicontinental sea deposits, central-eastern Yellow Sea. Mar. Geol., 188, 317-331. https://doi.org/10.1016/S0025-3227(02)00379-1
  10. Chough, S.K., Lee, H.J., Chun, S.S., and Shinn Y.J. (2004) Depositional processes of late Quaternary sediments in the Yellow Sea: a review. Geosciences Journal, 8(2), 211-264. https://doi.org/10.1007/BF02910197
  11. Ehrmann, W. (1998) Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeogr. Palaeocli. Palaeoecol., 139, 213-231. https://doi.org/10.1016/S0031-0182(97)00138-7
  12. Esquevin, J. (1969) Influence de la composition chimique des illites surcristallinite. Bull Centre Rech Rau-SNPA, 3(1), 147-153.
  13. Frey, M. (1987) Low Temperature Metamorphism. Chapman & Hall, London, p. 351.
  14. Gingele, F.X., Müller, P.M., and Schneider, R.R. (1998) Orbital forcing of freshwater input in the Zaire Fan area-3-lay mineral evidence from the last 200 kyr. Palaeogeogr. Palaeocli. Palaeoecol., 138, 17-26. https://doi.org/10.1016/S0031-0182(97)00121-1
  15. Gingele, F.X., Deckker, P.D., and Hillenbrand, C.-D. (2001) Clay mineral distribution in surface sediments between Indonesia and NW Australia - source and transport by ocean currents. Mar. Geol., 179. 135-146. https://doi.org/10.1016/S0025-3227(01)00194-3
  16. Jin, J.H. and Chough, S.K. (1998) Partitioning of transgressive deposits in the southeastern Yellow Sea: a sequence stratigraphic interpretation. Mar. Geol., 149, 79-92. https://doi.org/10.1016/S0025-3227(98)00023-1
  17. Khim, B.K. (1988) Sedimentological study of the muddy deposits in the Yellow Sea. MS thesis, Seoul National University, Seoul, Korea.
  18. Koshikawa, M.K., Takamatsu, T., Takada, J., Zhu, M., Xu, B., Chen, Z., Murakami, S., Xu, K., and Watanabe, M. (2007) Distributions of dissolved and particulate elements in the Yangtze estuary in 1997-2002: Background data before the closure of the Three Gorges Dam. Estuar. Coast. Shelf Sci., 71, 26-36. https://doi.org/10.1016/j.ecss.2006.08.010
  19. Krumm, S. and Buggisch, W. (1991) Sample preparation effects on illite crystallinity measurements: grain size gradation and particle orientation. J. Metam. Geol., 9, 671-677. https://doi.org/10.1111/j.1525-1314.1991.tb00557.x
  20. Kubler, B., 1967, La cristallinitd de l'illite et les zones tout -t fait supErieures du mEtamorphisme. In Etages tectoniques, Colloque de Neuch-tel 1966, Edition de la Baconnitre, Neuch-tel, Switzerland. 105-121.
  21. Lee, H.J. and Chough, S.K. (1989) Sediment distribution, dispersal and budget in the Yellow Sea. Mar. Geol., 87, 195-205. https://doi.org/10.1016/0025-3227(89)90061-3
  22. Lee, H.J. and Chu, Y.S. (2001) Origin of inner-shelf mud deposit in the southeastern Yellow Sea: Huksan Mud Belt. J. Sediment. Res., 71, 144-154. https://doi.org/10.1306/040700710144
  23. Lim, D.I., Choi, J.Y., Jang, H.S., Rho, K.C., and Ahn, K.S. (2007a) Recent sediment accumulation and origin of shelf mud deposits in the Yellow Sea and East China Seas. Prog. Oceanogr., 73, 145-159. https://doi.org/10.1016/j.pocean.2007.02.004
  24. Lim, D.I., Shin, I.-H., and Jung, H.S. (2007b) Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea. Jour. Korean Earth Science Society, 28(3), 311-323. (Korean with English abstract) https://doi.org/10.5467/JKESS.2007.28.3.311
  25. Liu, M.H., Wu, S.Y., and Wang, Y.J. (1987) The late Quaternary sedimentation in the Yellow Sea. Ocean Press, Beijing (in Chinese).
  26. Liu, Z., Colin, C., Huang, W., Chen, Z., Trentesaux, A., and Chen, J. (2007) Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea. Chin. Sci. Bull., 52(8), 1101-1111. https://doi.org/10.1007/s11434-007-0161-9
  27. Ma, M., Feng, Z., Guan, C., Ma, Y., Xu, H., and Li, H. (2001) DDT, PAH and PCB in sediments from the intertidal zone of the Bohai Sea and the Yellow Sea. Mar. Pollut. Bull. 42, 132-136. https://doi.org/10.1016/S0025-326X(00)00118-1
  28. Milliman, J.D. and Meade, R.H. (1983) World-wide delivery of river sediment to the oceans. J. Geol., 91, 1-21. https://doi.org/10.1086/628741
  29. Milliman, J.D., Shen, H.T., Yang, Z.S., and Meade, R.H. (1985) Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Cont. Shelf Res., 4, 37-46. https://doi.org/10.1016/0278-4343(85)90020-2
  30. Moon, D.H., Yi, H.-Y., Shin, K.-H. Do, J.Y., and Cho, H.G. (2009) Mineral distribution of southeastern Yellow Sea and South Sea of Korea using quantitative XRD analysis. J. Miner. Soc. Korea, 23(1), 49-61. (Korean with English abstract)
  31. Moon, D.H., Cho, H.G., and Yi H.-I. (2010) Illite crystallinity and intensity ratio in the marine surface sediments around the Korean Peninsula. 20th General Meeting of the International Mineralogical Association, 21-7 August, 2010, Budapest, Hungary, 636p.
  32. Park, S.C., Lee, H.H., Han, H.S., Lee, G.H., Kim, D.C., and Yoo, D.G. (2000) Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea. Mar. Geol., 170, 271-288. https://doi.org/10.1016/S0025-3227(00)00099-2
  33. Park, Y.A. and Khim, B.K. (1992) Origin and dispersal of recent clay minerals in the Yellow Sea. Mar. Geol., 104, 205-213. https://doi.org/10.1016/0025-3227(92)90095-Y
  34. Ren, M.E. and Shi, Y.L. (1986) Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea. Cont. Shelf Res., 6, 785-810. https://doi.org/10.1016/0278-4343(86)90037-3
  35. Schubel, J.R., Shen, H.T., and Park, M.J. (1984) A comparison of some characteristic sedimentation processes of estuaries entering the Yellow Sea. In: Park, Y.A., Pilkey, O.H., Kim, S.W. (Eds.), Marine Geology and Physical Processes of the Yellow Sea, 286-308.
  36. Wei, J.W., Shi, X.F., Xin, C.Y., and Chen, Z.H. (2000) Distribution patterns of clay minerals in the Yellow Sea and their significance. Yellow Sea: epicontinent shelf in Asia. Proceedings of First Korea-China Symposium on Sedimentary Processes and Depositional Environments, Ansan, Korea, April 6-9, 2000. Seoul, Korea, 179-186.
  37. Wu, Y., Zhang, J., Mi, T.Z., and Li, B. (2001) Occurrence of n-alkanes and polycyclic aromatic hydrocarbons in the core sediments of the Yellow Sea. Mar. Chem., 76, 1-15. https://doi.org/10.1016/S0304-4203(01)00040-8
  38. Yang, S.Y., Jung, H.S., Lim, D.I., and Li, C.X. (2003) A review on the provenance discrimination of sediments in the Yellow Sea. Earth Sci. Rev., 63, 93-120. https://doi.org/10.1016/S0012-8252(03)00033-3
  39. Zhao, Y.Y., Park, Y.A., Qin, Y.S., Choi, J.Y, Gao, S., Li, F.Y., Cheng, P., and Jiang, R.H. (2001) Material source for the Eastern Yellow Sea Mud: evidence of mineralogy and geochemistry from China-Korea joint investigation. The Yellow Sea, 7, 22-26.

Cited by

  1. Prediction and Analysis of Pre-Consolidation by Unconfined Compressive Strength vol.58, pp.6, 2016, https://doi.org/10.5389/KSAE.2016.58.6.071
  2. Mineralogical Characteristics of Marine Sediments Cores from Uleung Basin and Hupo Basin, East Sea vol.28, pp.1, 2015, https://doi.org/10.9727/jmsk.2015.28.1.71
  3. Paleoenvironmental Reconstruction of the Hupo Basin Using Grain Size and Mineral Analysis vol.27, pp.3, 2014, https://doi.org/10.9727/jmsk.2014.27.3.159
  4. Sediment Provenance of Southeastern Yellow Sea Mud Using Principal Component Analysis vol.27, pp.3, 2014, https://doi.org/10.9727/jmsk.2014.27.3.107
  5. Hydrothermal Alteration Around the TA 26 Seamounts of the Tofua Volcanic Arc in Lau Basin, Tonga vol.25, pp.4, 2012, https://doi.org/10.9727/jmsk.2012.25.4.233
  6. Distribution Pattern, Geochemical Composition, and Provenance of the Huksan Mud Belt Sediments in the Southeastern Yellow Sea vol.34, pp.4, 2013, https://doi.org/10.5467/JKESS.2013.34.4.289
  7. Sediment Provenance of Southwestern Cheju Island Mud using Principal Component Analysis vol.26, pp.3, 2013, https://doi.org/10.9727/jmsk.2013.26.3.189
  8. Mineralogical and sedimentological characteristics of the U Formation underlying the volcanic strata in Jeju Island, Korea vol.52, pp.4, 2016, https://doi.org/10.14770/jgsk.2016.52.4.389
  9. 통가열도 TA 25 해저산의 열수변질 vol.27, pp.4, 2012, https://doi.org/10.9727/jmsk.2014.27.4.169
  10. 강릉-동해 연안 퇴적물의 점토광물에 관한 연구 vol.33, pp.3, 2012, https://doi.org/10.22807/kjmp.2020.33.3.175
  11. 이어도와 주변 해역의 표층퇴적물 분포와 퇴적물 기원지 vol.41, pp.6, 2012, https://doi.org/10.5467/jkess.2020.41.6.588