DOI QR코드

DOI QR Code

DNA Sequencing Analysis Technique by Using Solid-State Nanopore

고체상 나노구멍을 이용한 DNA 염기서열 분석기술

  • 김태헌 (고려대학교 전기전자전파공학부) ;
  • 박정호 (고려대학교 전기전자전파공학부)
  • Received : 2012.07.17
  • Accepted : 2012.09.12
  • Published : 2012.09.30

Abstract

Nanopore DNA sequencing is an emerging and promising technique that can potentially realize the goal of a low-cost and high-throughput method for analyzing human genome. Especially, solid-state nanopores have relatively high mechanical stability, simple surface modification, and facile fabrication process without the need for labeling or amplification of PCR (polymerized chain reaction) in DNA sequencing. For these advantages of solid-sate nanopores, the use of solid-state nanopores has been extensively considered for developing a next generation DNA sequencing technology. Solid-state nanopore sequencing technique can determine and count charged molecules such as single-stranded DNA, double-stranded DNA, or RNA when they are driven to pass through a membrane nanopore between two electrolytes of cis-trans chambers with applied bias voltage by measuring the ionic current which varies due to the existence of the charged particles in the nanopore. Recently, many researchers have suggested that nanopore-based sensors can be competitive with other third-generation DNA sequencing technologies, and may be able to rapidly and reliably sequence the human genome for under $1,000.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. http://www.genome.gov/sequencingcosts/ (retrieved on Jul. 4, 2012)
  2. http://www.genome.gov/12513210/ (retrieved on Jul. 4, 2012)
  3. P. K. Gupta, "Single-molecule DNA sequencing technologies for future genomics research", Trends in Biotechnology, Vol. 26, pp. 602-611, 2008. https://doi.org/10.1016/j.tibtech.2008.07.003
  4. E. R. Mardis, "Next-generation DNA sequencing methods", Annual Review of Genomics and Human Genetics, Vol. 9, pp. 387-402, 2008. https://doi.org/10.1146/annurev.genom.9.081307.164359
  5. M. L. Metzker, "Sequencing technologies the next generation", Nature Reviews Genetics, Vol. 11, pp. 31-46, 2010. https://doi.org/10.1038/nrg2626
  6. B. M. Venkatesan and R. Bashir, "Nanopore sensors for nucleic acid analysis", Nature Nanotechnology, Vol. 6, pp. 615-624, 2010. https://doi.org/10.1038/nchembio.406
  7. A. Kahvejian, J. Quackenbush, and J. F. Thompson, "What would you do if you could sequence everything?", Nature Biotechnology, Vol. 26, pp. 1125-1133, 2008. https://doi.org/10.1038/nbt1494
  8. B. Luan, G. Stolovitzky, and G. Martyna, "Slowing and controlling the translocation of DNA in a solidstate nanopore", Nanoscale, Vol. 4, pp. 1068-1077, 2012. https://doi.org/10.1039/c1nr11201e
  9. Y. Astier, O. Braha, and H. Bayley, "Toward single molecule DNA sequencing: Direct identification of ribonucleoside and deoxyribonucleoside 5'- monophosphates by using an engineered protein nanopore equipped with a molecular adapter", Journal of the American Chemical Society, Vol. 128, pp. 1705-1710, 2006. https://doi.org/10.1021/ja057123+
  10. J. Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley, "Continuous base identification for single-molecule nanopore DNA sequencing", Nature Nanotechnology, Vol. 4, pp. 265-270, 2009. https://doi.org/10.1038/nnano.2009.12
  11. I. M. Derrington, T. Z. Butler, M. D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, and J. H. Gundlach, "Nanopore DNA sequencing with MspA", PNAS, Vol. 107, pp. 16060-16065, 2010. https://doi.org/10.1073/pnas.1001831107
  12. X. Liang and S. Y. Chou, "Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis", Nano Letters, Vol. 8, pp. 1472- 1476, 2008. https://doi.org/10.1021/nl080473k
  13. H. W. Ch Postma, "Rapid sequencing of individual DNA molecules in graphene nanogaps", Nano Letters, Vol. 10, pp. 420-425, 2010. https://doi.org/10.1021/nl9029237
  14. A. Singer, M. Wanunu, W. Morrison, H. Kuhn, M. Frank-Kamenetskii, and A. Meller, "Nanopore based sequence specific detection of duplex DNA for genomic profiling", Nano Letters, Vol. 10, pp. 738-742, 2010. https://doi.org/10.1021/nl100058y
  15. A. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen, and C. Dekker, "Fabrication of solidstate nanopores with single-nanometre precision", Nature Materials, Vol. 2, pp. 537-540, 2003. https://doi.org/10.1038/nmat941
  16. B. M. Venkatesan, A. B. Shah, J. M. Zuo, and R. Bashir, "DNA sensing using nanocrystalline surface-enhanced $Al_{2}O_{3}$ nanopore sensors", Advanced Functional Materials, Vol. 20, pp. 1266- 1275, 2010. https://doi.org/10.1002/adfm.200902128
  17. H. Liu, J. He, J. Tang, P. Pang, D. Cao, P. Krstic, S. Joseph, S. Lindsay, and C. Nuckolls, "Translocation of single-stranded DNA through single-walled carbon nanotubes", Science, Vol. 327, pp. 64-67, 2010. https://doi.org/10.1126/science.1181799
  18. R. Fan, R. Karnik, M. Yue, D. Li, A. Majumdar, and P. Yang, "DMA translocation in inorganic nanotubes", Nano Letters, Vol. 5, pp. 1633-1637, 2005. https://doi.org/10.1021/nl0509677
  19. K. Healy, B. Schiedt, and I. P. Morrison, "Solidstate nanopore technologies for nanopore-based DNA analysis", Nanomedicine, Vol. 2, pp. 875-897, 2007. https://doi.org/10.2217/17435889.2.6.875
  20. B. M. Venkatesan, B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov, and R. Bashir, "Highly sensitive, mechanically stable nanopore sensors for DNA analysis", Advanced Materials, Vol. 21, pp. 2771- 2776, 2009. https://doi.org/10.1002/adma.200803786
  21. J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, "Ion-beam sculpting at nanometre length scales", Nature, Vol. 412, pp. 166-169, 2001. https://doi.org/10.1038/35084037
  22. C. J. Russo and J. A. Golovchenko, "Atom-by-atom nucleation and growth of graphene nanopores", PNAS, Vol. 109, pp. 5953-5957, 2012. https://doi.org/10.1073/pnas.1119827109
  23. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J. A. Golovchenko, "Graphene as a subnanometre trans-electrode membrane", Nature, Vol. 467, pp. 190-193, 2010. https://doi.org/10.1038/nature09379
  24. G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandbergen, L. M. K. Vandersypen, and C. Dekker, "DNA translocation through graphene nanopores", Nano Letters, Vol. 10, pp. 3163-3167, 2010. https://doi.org/10.1021/nl102069z
  25. B. Song, G. F. Schneider, Q. Xu, G. Pandraud, C. Dekker, and H. Zandbergen, "Atomic-scale electronbeam sculpting of near-defect-free graphene nanostructures", Nano Letters, Vol. 11, pp. 2247- 2250, 2011. https://doi.org/10.1021/nl200369r
  26. A. R. Hall, A. Scott, D. Rotem, K. K. Mehta, H. Bayley, and C. Dekker, "Hybrid pore formation by directed insertion of $\alpha$-haemolysin into solid-state nanopores", Nature Nanotechnology, Vol. 5, pp. 874-877, 2010. https://doi.org/10.1038/nnano.2010.237
  27. S. M. Iqbal, D. Akin, and R. Bashir, "Solid-state nanopore channels with DNA selectivity", Nature Nanotechnology, Vol. 2, pp. 243-248, 2007. https://doi.org/10.1038/nnano.2007.78
  28. T. Nelson, B. Zhang, and O. V. Prezhdo, "Detection of nucleic acids with graphene nanopores: Ab initio characterization of a novel sequencing device", Nano Letters, Vol. 10, pp. 3237-3242, 2010. https://doi.org/10.1021/nl9035934
  29. M. Tsutsui, M. Taniguchi, K. Yokota, and T. Kawai, "Identifying single nucleotides by tunnelling current", Nature Nanotechnology, Vol. 5, pp. 286- 290, 2010. https://doi.org/10.1038/nnano.2010.42
  30. S. K. Min, W. Y. Kim, Y. Cho, and K. S. Kim, "Fast DNA sequencing with a graphene-based nanochannel device", Nature Nanotechnology, Vol. 6, pp. 162-165, 2011. https://doi.org/10.1038/nnano.2010.283
  31. J. K. Rosenstein, M. Wanunu, C. A. Merchant, M. Drndic, and K. L. Shepard, "Integrated nanopore sensing platform with sub-microsecond temporal resolution", Nature Methods, Vol. 9, pp. 487-492,2012. https://doi.org/10.1038/nmeth.1932
  32. M. Tsutsui, M. Taniguchi, and T. Kawai, "Fabrication of 0.5 nm electrode gaps using self-breaking technique", Applied Physics Letters, Vol. 93, 2008.
  33. http://www.ks.uiuc.edu/ (retrieved on Jul. 10, 2012)