DOI QR코드

DOI QR Code

Cellular Protective and Antioxidative Acivities of Parthenocissus tricuspidata Stem Extracts

담쟁이덩굴 줄기 추출물의 세포 보호 작용과 항산화 활성

  • Jo, Na-Rae (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Park, Min-A (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Chae, Kyo-Young (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Park, Su-Ah (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Jeon, So-Ha (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Ha, Ji-Hoon (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology) ;
  • Park, Soo-Nam (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D center, Seoul National University of Science and Technology)
  • 조나래 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 박민아 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 채교영 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 박수아 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 전소하 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 하지훈 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실 화장품종합기술연구소)
  • Received : 2012.05.23
  • Accepted : 2012.09.20
  • Published : 2012.09.30

Abstract

In this study, the cellular protective effects on HaCaT cells and human erythrocytes and antioxidative effects of P. tricuspidata stem extracts were investigated. The ethyl acetate ($50{\mu}g/mL$) and aglycone fraction ($25{\mu}g/mL$) of P. tricuspidata stem extracts doesn't show any characteristics of cytotoxicity. When HaCaT cells were treated with 10 mM $H_2O_2$ and $30{\mu}M$ rose bengal, the ethyl acetate ($6.25{\sim}50{\mu}g/mL$) and aglycone ($6.25{\sim}25{\mu}g/mL$) fraction protected the cells against the oxidative damage in a concentration dependent manner. The P. tricuspidata stem extracts showed more prominent cellular protective effect than (+)-${\alpha}$-tocopherol, known as lipid antioxidant at $10{\mu}g/mL$. The ethylacetate fraction of P. tricuspidata stem extracts ($18.5{\mu}g/mL$) showed more free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity ($FSC5_{50}$). Reactive oxygen species (ROS) scavenging activity ($OSC_{50}$) of P. tricuspidata stem extracts on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system was investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate ($1.72{\mu}g/mL$) and the aglycone fraction ($1.53{\mu}g/mL$) showed similar ROS scavenging activity of L-ascorbic acid ($1.50{\mu}g/mL$). These results indicate that extract/fractions of P. tricuspidata stem extracts can function as natural cytoprotective agents and antioxidants in biological systems, particularly skin exposed to UV radiation by protecting cellular membrane against ROS.

본 연구에서는 담쟁이덩굴 줄기 추출물의 HaCaT 세포와 사람 적혈구 세포에서의 세포 보호 효과 및 항산화능을 측정하였다. HaCaT 세포를 이용한 실험에서, 담쟁이덩굴 줄기 추출물의 에틸아세테이트 분획과 아글리콘 분획은 각각 $50{\mu}g/mL$$25{\mu}g/mL$의 농도에서 독성을 나타내지 않았다. 10 mM의 $H_2O_2$$30{\mu}M$의 rose bengal을 HaCaT 세포에 처리하였을 때, 에틸아세테이트 분획($6.25{\sim}50{\mu}g/mL$) 및 아글리콘 분획($6.25{\sim}25{\mu}g/mL$)은 농도 의존적으로 세포를 보호하였다. 적혈구 광용혈에서 담쟁이덩굴 줄기 추출물은 $10{\mu}g/mL$의 농도에서 대표적인 지용성 항산화제인 ${\alpha}$-토코페롤보다도 큰 세포보호효과를 나타내었다. 담쟁이덩굴 줄기 추출물 에틸아세테이트 분획의 free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) 소거활성($FSC_{50}$)은 $18.5{\mu}g/mL$를 나타내었다. Luminol-의존성 화학발광법을 이용한 $Fe^{3+}$-EDTA/$H_2O_2$계에서 생성된 활성산소종(reactive oxygen species, ROS)에 대한 담쟁이덩굴 줄기 추출물의 총항산화능($OSC_{50}$)은 에틸아세테이트 분획의 경우 $1.72{\mu}g/mL$, 아글리콘 분획은 $1.53{\mu}g/mL$로 대표적 항산화제인 L-ascorbic acid ($OSC_{50}=1.50{\mu}g/mL$)와 유사한 항산화능의 크기를 나타내었다. 이상의 결과들은 담쟁이덩굴 줄기 추출물이 ROS에 대항하여 세포를 보호함으로써 생체계, 특히 태양 자외선에 노출된 피부에서 세포보호제 및 천연항산화제로서 작용할 수 있음을 가르킨다.

Keywords

References

  1. F. Afaq, V. M. Adhami, and H. Mukhtar, Photochemoprevention of ultraviolet B signaling and photocarcinogenesis, Mutat. Res., 571, 153 (2005).
  2. M. A. Bachelor and G. T. Bowden, UVA-mediated activation of signaling pathways inbolved in skin tumor promotion and progression, Semin., Cancer Biol., 14, 131 (2004).
  3. E. Cadenas, Biochemistry of oxygen toxicity, Ann. Rev. Biochem., 58, 79 (1989). https://doi.org/10.1146/annurev.bi.58.070189.000455
  4. A. Naqui, B. Chance, and E. Cadenas, Reactive oxygen intermediate in biochemistry, Ann. Rev. Biochem., 55, 137 (1986). https://doi.org/10.1146/annurev.bi.55.070186.001033
  5. J. C. Fantone and P. A. Ward, Role of oxygen- derived free radicals and metabolites in leukocyte dependent inflammatory reaction, Ann. J. Path., 107, 397 (1982).
  6. K. J. A. Davies, Protein damage and degradation by oxygen radical, J. Biol. Chem., 262, 9895 (1987).
  7. C. S. Foote, Photosensitized oxidation and singlet oxygen; consequences in biological systems, In Free Radical in Biology, ed. W. A. Pryor, 2, 85, Academic press, New York (1976).
  8. M. J. Steinbeck, A. U. Khan, and M. J. Karnovsky, Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap, J. Biol. Chem., 267, 13425 (1992).
  9. S. N. Park, Ph. D. Disseration, Seoul National Univ., Seoul, Korea (1989).
  10. S. N. Park, Skin aging and antioxidants, J. Soc. Cosmet. Scienctists Korea, 23(1), 75 (1997).
  11. J. Pincemail, Free radicals and antioxidants in human diseases. In Analysis of Free radicals in Biology Systems, eds. A. E. Favier, J. Cadet, B. Kalyanaraman, M. Fontecave, and J. L. Pierre, 83, Birkhauser Verlag Basel, Switzerland (1995).
  12. J. R. Kanofsky, H. Hoogland, R. Wever, and S. J. Weiss, Singlet oxygen production by human eosinophils. J. Biol. Chem., 263, 9692 (1988).
  13. A. Oikarinen, J. Karvonen, J. Uitto, and M. Hannuksela, Connective tissue alterations in skin exposed to natural and therapeutic UV-radiation. Photodermatology, 2, 15 (1985).
  14. A. Oikarinen and M. Kallioinen, A biochemical and immunohistochemical study of collagen in sun-exposed and protected skin. Photodermatology, 6, 24 (1989).
  15. L. H. Kilgman, UVA induced biochemical changes in hairless mouse skin collagen: A contrast to UVB effects. Biological responses to Ultraviolet A Radiation, ed. F. Urbach, 209, Valdemar, Overland Park (1992).
  16. M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, Singlet oxygen may mediate the ultraviolet A induced synthesis of interstitial collagenase., J. Invest. Dermatol., 104, 194 (1995). https://doi.org/10.1111/1523-1747.ep12612751
  17. K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba and H. Sies, Singlet oxygen induces collagenase expression in human skin fibroblasts. FEBS Lett., 331, 304 (1993). https://doi.org/10.1016/0014-5793(93)80357-Z
  18. K. Scharffetter-Kochanek, Photoaging of the connective tissues of skin: Its prevention and therapy, antioxidants in disease mechanism and therapy. Adv. Pharmacol., 38, 639 (1997)
  19. L. Packer, Ultraviolet radiation (UVA, UVB) and skin antioxidants, In: Free radical damage and its control, eds. C. A. Rice-Evans and R. H. Burdon, 239, Elsevier Science, Amsterdam (1994).
  20. J. J. Thiele, C. O. Barland, R. Ghadially, and P. M. Elias, Permeability and antioxidant Barriers in aged epidermis, Skin Aging, eds. B. A. Gilchrest, J. Krutman, 65, Springer, Berlin Heidelberg (2006).
  21. H. K. Hwang, Flavonol glycosides from Parthenocissus tricuspidata Leaves, J. Pharm. Soc. Korea, 39(3), 289 (1995).
  22. I. H. Son, I. M. Chung, S. J. Lee, and H. I. Moon, Antiplasmodial activity of novel stilbene derivatives isolated from Parthenocissus tricuspidata from South Korea. Parasitol. Res., 101, 237 (2007). https://doi.org/10.1007/s00436-006-0454-y
  23. M. J. Kim, S. Y. Shin, B. G. Koo, G. Baek, T. J. Kim, and J. K. Park, Synergic antimicrobial activity of chitosan with the ethanol extract from Parthenocissus tricuspidata, J. Chitin Chitosan, 16(3), 177 (2011).
  24. H. J. Jeong and C. H. Kim, Screening of the antioxidant defense systems from Parthenocisuss tricuspidata PLANCH. Korean J. Plant. Res., 14(2), 116 (2001).
  25. H. J. Kim. M. Saleem, S. H. SEO, C. Jin, and Y. S. Lee, Two new antioxidant stillbene dimer, Parhenostilbenins A and B from Parthnocissus tricuspidata. Planta med., 71. 973 (2005). https://doi.org/10.1055/s-2005-871229
  26. T. Tanaka, M. Ohama, K. Morimoto, F. Asai, and M. Iinuma, A resveratrol dimer from Parthenocissus tricuspidata. Pergamon, 48(7), 1241 (1998).
  27. W. H. Park, S. J. Lee, and H. I. Moon, Antimalarial activity of a new stilbene glycoside from Parhenocissus tricuspicata in Mice. AAC, 52(9), 3451 (2008). https://doi.org/10.1128/AAC.00562-08
  28. M. Ohyama, T. Tanaka, T. Ito, M. Iinuna, K. F. Bastow, and K. H. Lee, Antitumor agents 200. cytotoxicity of naturally occuffing resveratrol oligomers and their acetate derivatives. Pergamon. 9, 3057 (1999).
  29. M. Saleem, H. J. Kim, C. B. Jin, and Y. S. Lee, Antioxidant caffeic acid derivatives from leaves of Parthnocissus tricuspidata, Arch. Pharm. Res., 27(3), 300(2004). https://doi.org/10.1007/BF02980064
  30. T. Kundakovic, T. Stanojkovic, M. Milenkovic, J. Grubin, Z. Juranic, B. Stevanovic, and N. Kovacevic, Cytotoxic, antioxidant and Antimicrobial activities of Ampelopsis Brevipedunculata and Parthenocissus Tricuspidata (Vitaceae), Arch. Biol. Sci., 60(4), 641(2008). https://doi.org/10.2298/ABS0804641K

Cited by

  1. Inhibitory Effects of Dendropanax Morbifera Leaf Extracts on Melanogenesis through Down-Regulation of Tyrosinase and TRP-2 vol.25, pp.5, 2014, https://doi.org/10.14478/ace.2014.1058