DOI QR코드

DOI QR Code

Micromolding Technique for Controllable Anisotropic Polymeric Particles with Convex Roof

볼록한 지붕을 갖는 이방성 고분자 입자의 곡률반경 제어를 위한 마이크로몰딩 기술

  • Jeong, Jae-Min (Department of Green Energy Technology, Graduate School of Green Energy Technology, Chungnam National University) ;
  • Son, Jung-Woo (Cheonan Bugil High School) ;
  • Choi, Chang-Hyung (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 정재민 (충남대학교 녹색에너지대학원 녹색에너지기술학과) ;
  • 손정우 (천안북일고등학교) ;
  • 최창형 (충남대학교 화학공학과) ;
  • 이창수 (충남대학교 화학공학과)
  • Received : 2012.08.29
  • Accepted : 2012.09.13
  • Published : 2012.09.30

Abstract

Synthesis of well-defined particle with tunable size, shape, and functionalities is strongly emphasized for various applications such as chemistry, biology, material science, chemical engineering, medicine, and biotechnology. This study presents micromolding method for the fabrication of anisotropic particles with elegant control of curvature of covex roof. For the demostration of rapid fabrication of the particles, we have applied polydimethylsiloxane (PDMS) micromold as structure guiding template and wetting fluid to control curvature of roof of the particles. Based on this approach, we can control the radius of curvature from $20{\mu}m$ to $70{\mu}m$ with different aspect ratio of mold. In addition, wetting fluids with different wetting properties can also modulate the height and radius of curvature of the particles. We envision that this methodology is promising tool for precise control of particle shape in 3-dimensional space and new synthetic route for anisotropic particles with cost effective, simple, easy, and fast procedure.

입자의 크기, 모양, 및 기능기를 제어할 수 있는 제조 기술은 화학, 생물, 재료과학, 화학 공학, 의약 그리고 생명공학과 같은 다양한 적용분야에 적용될 수 있는 중요한 기술중의 하나이다. 본 연구는 볼록한 지붕을 지니는 이방성 고분자 입자의 곡률 제어를 위해 젖음성 유체를 도입한 새로운 미세몰딩(micromolding technique) 방법에 관한 것이다. 몰드의 종횡비 조절을 통하여 입자의 곡률 반경을 $20{\mu}m$에서 $70{\mu}m$까지 제어할 수 있었으며 서로 다른 습윤특성을 지닌 젖음성 용액을 이용하여 이방성 고분자 입자의 높이와 곡률반경을 조절할 수 있었다. 본 연구에서 제시한 미세몰딩 기술은 저렴하고, 간단하고, 쉽고 빠른 방법으로 이방성 입자를 제작할 수 있으며 3차원 입자 모양의 정밀제어가 가능한 새로운 방법으로 판단된다.

Keywords

References

  1. Julie, A. C., and Samir, M., "Role of target geometry in phagocytosis," Proc. Nat. Acad. Sci., 103, 4930-4934 (2006). https://doi.org/10.1073/pnas.0600997103
  2. Julie, A. C., Yogesh, K. K., and Samir, M., "Particle Shape: A New Design Parameter for Micro- and Nanoscale Drug Delivery Carriers," J. Controlled Release, 121, 3-9 (2005).
  3. Sue, D. X., Anja, S., Gabriela, M., Cassandra, D., Vasso, A., Patricia, L. M., and Magdalena, P., "Pathogen Recognition and Development of Particulate Vaccines: Does Size Matter?," Methods, 40, 1-9 (2006). https://doi.org/10.1016/j.ymeth.2006.05.016
  4. Andreas, W., and Axel, H. E. M., "Janus Particles," Soft Matt., 4, 663-668 (2008). https://doi.org/10.1039/b718131k
  5. Nagesh, K., Shanta, D., Pedro, M. V., Lucy, Q. L., Rohit, K., Stephen, J. L., Robert, L., and Omid, C. F., "Engineering of Self-assembled Nanoparticle Platform for Precisely Controlled Combination Drug Therapy," Proc. Nat. Acad. Sci., 10, 1073 (2010).
  6. Muller, C. C., "Physicochemical Characterization of Colloidal Drug Delivery Systems such as Reverse Micelles, Vesicles, Liquid Crystals and Nanoparticles for Topical Administration," Eur. J. Pharmaceutics and Biopharmaceutics, 58, 343-356 (2004). https://doi.org/10.1016/j.ejpb.2004.03.028
  7. Park, S. H., Lim, J. H., Chung, S. W., and Chad, A. M., "Self- Assembly of Mesoscopic Metal-Polymer Amphiphiles," Sci., 303, 348-351 (2004). https://doi.org/10.1126/science.1093276
  8. Basabaraj, M., Jan, F., and Jan, V., "Self-Assembly and Rheology of Ellipsoidal Particles at Interfaces," Langmuir, 25, 2718- 2728 (2009). https://doi.org/10.1021/la803554u
  9. Yapei, W., Peng, H., Huaping, X., Zhiqiang, W., Xi, Z., and Alexander, V. K., "Photocontrolled Self-Assembly and Disassembly of Block Ionomer Complex Vesicles: A Facile Approach toward Supramolecular Polymer Nanocontainers," Langmuir, 26, 709-715 (2010). https://doi.org/10.1021/la9023844
  10. Jianping, G., Yongxing, H., and Yadong, Y., "Highly Tunable Superparamagnetic Colloidal Photonic Crystals," Angew. Chem. Int. Ed., 46, 7428-7431 (2007). https://doi.org/10.1002/anie.200701992
  11. Stephane, B., Cecile, C., Joseph, W. W., Allen, Y., and Abraham, D. S., "Shape Selectivity in the Assembly of Lithographically Designed Colloidal Particles," J. Am. Chem. Soc., 129, 40-41 (2007). https://doi.org/10.1021/ja067527h
  12. Sharon, C. G., and Michael, J. S., "Anisotropy of Building Blocks and Their Assembly into Complex Structures," Nat. Mater., 6, 557-562 (2007). https://doi.org/10.1038/nmat1949
  13. Stephanie, E. A. G., Patricia, A. R., Patrick, D. P., Christopher, L., Victoria, J. M., Mary, E. N., and Joseph, M. D., "The Effect of Particle Design on Cellular Internalization Pathways," PNAS, 105, 11613-11618 (2008). https://doi.org/10.1073/pnas.0801763105
  14. Akira, H., Ryosuke, K., Yoshinori, T., Akihito, H., and Hiroyasu, Y., "Macroscopic Self-assembly through Molecular Recognition," Nat. Chem., 3, 34-37 (2011). https://doi.org/10.1038/nchem.893
  15. Shinji, S., Mitsutoshi, N., Hisatsugu, I., and Minoru, S., "Synthesis of Polymeric Microspheres with Narrow Size Distributions Employing Microchannel Emulsification," Macromol. Rapid Commun., 22, 773-778 (2001). https://doi.org/10.1002/1521-3927(20010701)22:10<773::AID-MARC773>3.0.CO;2-H
  16. Shinji, S., Mitsutoshi, N., and Minoru, S., "Preparation of Monodispersed Poymeric Microspheres over 50 ${\mu}m$ Employing Microchannel Emulsification," Ind. Eng. Chem. Res., 41, 4043- 4047 (2002). https://doi.org/10.1021/ie0201415
  17. Dhananjay, D., Shelley, S. G., Daniel, C. P., Hatton, T. A., and Patrick, S. D., "Stop-flow Lithography in a Microfluidic Device," Lab Chip, 7, 818-828 (2007). https://doi.org/10.1039/b703457a
  18. Ji, H. J., Dhananjay, D., Hatton, T. A., Edwin, L. T., and Patrick, S. D., "A Route to Three-Dimensional Structures in a Microfluidic Device: Stop-Flow Interference Lithography," Angew. Chem. Int. Ed., 46, 9027-9031 (2007). https://doi.org/10.1002/anie.200703525
  19. Dhananjay, D., and Patrick, S. D., "The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics," Adv. Mater., 21, 1-16 (2009).
  20. Kai, P. Y., Hwang, D. K., Ramin, H., and Patrick, S. D., "Multifunctional Superparamagnetic Janus Particles," Langmuir, 26, 4281-4287 (2009).
  21. Julie, A. C., Yogesh, K. K., and Samir, M., "Making Polymeric Micro- and Nanoparticles of Complex Shapes," Proc. Nat. Acad. Sci., 29, 11901-11904 (2007).
  22. Choi, C. H., Lee, J. K., Yoon, K. S., Anubhav, T., Howard, A. S., David, A. W., and Lee, C. S., "Surface-Tension-Induced Synthesis of Complex Particles Using Confined Polymeric Fluids," Angew. Chem. Int. Ed., 49, 7748-7752 (2010). https://doi.org/10.1002/anie.201002764
  23. Samir, M., and Joerg, L., "Physical Approaches to Biomaterial Design," Nat. Mater., 8, 15-23 (2009). https://doi.org/10.1038/nmat2344
  24. Jillian, L. P., Kevin, P. H., Mary, E. N., and Joseph, M. D., "PRINT: A Novel Platform Toward Shape and Size Specific Nanoparticle Theranostics," Acc. Chem. Res., 44, 990-998 (2011). https://doi.org/10.1021/ar2000315
  25. Hiroaki, O., Murat, G., Kazunori, H., Kiyoshi, M., and Isao, S., "Direct Measurement of the Binding Force between Microfabricated Particles and a Planar Surface in Aqueous Solution by Force-Sensing Piezoresistive Cantilevers," Langmuir, 21, 11251-11261 (2005). https://doi.org/10.1021/la051666f
  26. Shengqing, X., Zhihong, N., Seo, M. S., Patrick, L., Eugenia, K., Howard, A. S., Piotr, G., Douglas, B. W., Irina, G., and George, M. W., "Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition," Angew. Chem., 117, 734-738 (2005). https://doi.org/10.1002/ange.200462226
  27. Christina, L. L., Choi, C. H., Yan, L., Lee, C. S., and Yi, H. M., "Fabrication of Uniform DNA-Conjugated HydrogelMicroparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays," Anal. Chem., 82, 5851-5858 (2010). https://doi.org/10.1021/ac101032r
  28. Xiangling, X., and Sanford, A. A., "Synthesis and Utilization of Monodisperse Hollow Polymeric Particles in Photonic Crystals," J. Am. Chem. Soc., 126, 7940-7945 (2004). https://doi.org/10.1021/ja049453k

Cited by

  1. Synthesis Technology of Functional Colloid Particles and Its Applications vol.18, pp.4, 2012, https://doi.org/10.7464/ksct.2012.18.4.331
  2. Synthesis of Shape Reconfigurable Janus Particles by External pH Stimuli vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.226
  3. Three-dimensional clustering of Janus cylinders by convex curvature and hydrophobic interactions vol.11, pp.24, 2015, https://doi.org/10.1039/C5SM00734H