DOI QR코드

DOI QR Code

Extraction Solution for the Coupling Coefficient at the Magnetically Coupled Wireless Power Transmission

자계 결합 무선 전력 전송에서의 결합 계수 추출 방법

  • Kim, Gun-Young (Department of Electronics and Radio Engineering, Kyung Hee University) ;
  • Lee, Bom-Son (Department of Electronics and Radio Engineering, Kyung Hee University)
  • 김건영 (경희대학교 전자전파공학과) ;
  • 이범선 (경희대학교 전자전파공학과)
  • Received : 2012.07.26
  • Accepted : 2012.09.06
  • Published : 2012.09.30

Abstract

This paper presented the extraction solution for the coupling coefficient at the magnetically coupled wireless power transmission(WPT) system through the analysis of its equivalent circuit considering the loss. The conventional extraction solution using coupled mode theory is generalized employing the extracted solution considering the load resistance. Consequently, the measuring process of extracting coupling coefficient becomes convenient since the even/odd mode analysis is not necessary. Furthermore, the coupling coefficient obtained from the induced extraction method was in excellent agreement with the coupling coefficient obtained using the ratio of magnetic flux passing through the two loops. The extraction of the accurate coupling coefficient at the magnetically coupled WPT is an essential work to analyze and optimize the WPT system.

본 논문에서는 손실을 고려한 등가 회로 분석을 통하여 자계 결합 무선 전력 전송 시스템에서의 결합 계수 추출식을 유도하였다. 부하 저항을 고려한 유도된 추출식을 이용하여 결합 모드 이론을 이용한 기존의 추출식을 일반화시켰다. 따라서 우수/기수 모드 해석이 불필요하기 때문에 측정 과정에서 쉽게 결합 계수를 구할 수 있다. 또한, EM 시뮬레이션에서 두 루프를 통과하는 자속의 비를 이용하여 구한 결합 계수와 유도된 추출식을 이용하여 구한 결합 계수가 일치함을 확인할 수 있다. 자계 결합 무선 전력 전송에서의 정확한 결합 계수를 추출한다면, 시스템을 분석하고 최적화시키는 데 유용하게 활용할 수 있다.

Keywords

References

  1. N. Tesla, U.S. patent 1,119,732, 1914.
  2. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Solacic, "Wireless power transfer via strongly coupled magnetic resonances", Science, vol. 317, pp. 83-86, Jul. 2007. https://doi.org/10.1126/science.1143254
  3. Chunlai Yu, Rengui Lu, Yinhua Mao, Litao Ren, and Chunbo Zhu, "Research on the model of magnetic- resonance based wireless energy transfer system", Vehicle Power and Proplsion Conference 2009, pp. 414-418, Sep. 2009.
  4. I. Awai, T. Komori, "A simple and versatile design method of resonator-coupled wireless power transfer systerm", Proc. ICCCAS 2010, Jul. 2010.
  5. Gunyoung Kim, Younkwon Jung, and Bomson Lee, "Wireless power transmission between two metamaterial- inspired loops at 300 MHz", Journal of Electromagnetic Engineering and Science, vol. 10, no. 4, pp. 219-223, Dec. 2010.
  6. Chungju Kim, Bomson Lee, "Analysis of magnetic coupled wireless power transmissions considering radiation loss", Journal of Electromagnetic Engineering and Science, vol. 11, no. 3, pp. 156-160, Nov. 2011.
  7. J. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley & Sons., 2001.
  8. K. Finkenzeller, RFID Handbook, Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd Edition, John Wiley & Sons, ch. 4, 2003.

Cited by

  1. Analysis of Elements for Efficiencies in Magnetically-Coupled Wireless Power Transfer System Using Metamaterial Slab vol.25, pp.11, 2014, https://doi.org/10.5515/KJKIEES.2014.25.11.1128