DOI QR코드

DOI QR Code

Establishment of rapid discrimination system of leguminous plants at metabolic level using FT-IR spectroscopy with multivariate analysis

FT-IR 스펙트럼 기반 다변량통계분석기법에 의한 두과작물의 대사체 수준 식별체계 확립

  • Song, Seung-Yeob (Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ha, Tae-Joung (Research Policy Bureau, R&D Performance Evaluation & Management Division, RDA) ;
  • Jang, Ki-Chang (Department of Functional Crop, National Institute of Crop Science (NICS), Rural Development Administration (RDA)) ;
  • Kim, In-Jung (Department of Biotechnology, Jeju National University) ;
  • Kim, Suk-Weon (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 송승엽 (한국생명공학연구원 그린바이오센터) ;
  • 하태정 (농촌진흥청 연구정책국 연구성과관리과) ;
  • 장기창 (국립식량과학원 기능성작물부 신소재개발과) ;
  • 김인중 (제주대학교 생명공학과) ;
  • 김석원 (한국생명공학연구원 생명자원센터)
  • Received : 2012.07.17
  • Accepted : 2012.08.02
  • Published : 2012.09.30

Abstract

To determine whether FT-IR spectroscopy combined with multivariate analysis for whole cell extracts can be used to discriminate major leguminous plant at metabolic level, seed extracts of six leguminous plants were subjected to Fourier transform infrared spectroscopy (FT-IR). FT-IR spectral data from seed extracts were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). The PCA could not fully discriminate six leguminous plants, however PLS-DA could successfully discriminate six leguminous plants. The hierarchical dendrogram based on PLS-DA separated the six leguminous plants into four branches. The first branch was consisted of all three Vigna species including Vigna radiata var. radiate, Vigna angularis var. angularis and Vigna unguiculata subsp. Unguiculata. Whereas Pisum sativum var. sativum, Glycine max L and Phaseolus vulgaris var. vulgaris were clustered into a separate branch respectively. The overall results showed that metabolic discrimination system were in accordance with known phylogenic taxonomy. Thus we suggested that the hierarchical dendrogram based on PLS-DA of FT-IR spectral data from seed extracts represented the most probable chemotaxonomical relationship between six leguminous plants.

본 연구에서는 국내에서 재배중인 대표적인 두과작물(대두, 완두, 강낭콩, 팥, 녹두, 동부)종자로부터 전세포추출물의 FT-IR 스펙트럼 데이터로부터 다변량통계분석(PCA, PLS-DA, HCA)을 이용하여 신속하고 간편한 종 구분체계를 확립하였다. 대사체수준에서 팥, 녹두, 동부는 유연관계가 높음을 알 수 있었으며 대두, 완두, 강낭콩은 비록 두과작물이지만 차이가 매우 큼을 알 수 있었다. 아울러 본 연구에서 얻어진 대사체 정보의 다변량통계분석에 의한 유연관계분석은 흥미롭게도 두과작물의 계통분류학적 유연관계와 밀접한 상관관계를 나타내었다. 따라서 FT-IR 스펙트럼 데이터의 다변량통계분석은 방법의 간편성과 신속성을 고려할 때 두과작물의 계통이나 품종의 신속한 식별 수단으로 활용이 가능할 것으로 기대된다. 또한 두과작물의 기능성 성분 함량 정보가 성공적으로 연계된다면 본 연구에서 확립된 대사체 기반 신속식별체계는 기능성 성분의 함량이 높은 계통이나 품종의 조기 선발수단으로 활용이 가능할 것으로 기대된다.

Keywords

References

  1. Choi IY, Lim SH, Kim DW, Shin YS, Kim NS (2000) Classification of diverse soybean germplasm with morphological characters and molecular markers. Kor J Genetics 22:87-100
  2. Dumas P, Miller L (2003) The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib Spec 32:3-21 https://doi.org/10.1016/S0924-2031(03)00043-2
  3. D'Souza L, a Devi P, Shridhar MPD, Naik CG (2008) Use of Fourier Transform Infrared (FTIR) Spectroscopy to Study Cadmium-Induced Changes in Padina Tetrastromatica (Hauck) Anal Chem. Insights 3:135-143
  4. Fiehn O, Kopka J, Drmann P, Altmann T, Trethewey R, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157-1161 https://doi.org/10.1038/81137
  5. Hong SB, Lee SJ, Hwang YH, Yoon KH, Lee SI, Nam MY, Song LS, Chung MG (2010) Variation of Anthocyanin, and Isoflavone Contents in Korean Black Soybeans Grown at Different Latitudinal Locations. Kor J Environ Agri 29: 129-137 https://doi.org/10.5338/KJEA.2010.29.2.129
  6. Im JB, Lee T (2011) Situation of International Production and Trade of Non-GM Dietary Soybean and Policy Implication. Kor J Intl Agri 23(1):115-122
  7. Jang SJ, Park SJ, Piao XM, Song HL, Hwang TY, Cho YG, Liu XH, Woo SH, Kang JH, Kim HS (2010) Genetic diversity and relationships of Korean, Japanese, and Chinese Jilin provincial wild soybeans (Glycine soja Sieb. And Zucc.) based on SSR markers. Kor J Breed Sci 42:87-99
  8. Kein P, Olsin T, Shoemaker R (1988) A rapid protocol for isolating soybean DNA. Soybean Genet Newsletter 15:150-152
  9. Kim CH (2011) Intraspecific Variation of Glycine max According to the Ratio of Mannose to Galactose in the Seeds. Kor J Env Eco 25:295-301
  10. Kim CH, Lee HJ, Kim YO (1993) Electrophoretic variation of seed proteins in Robinia pseudo-acacia. Kor J Ecol 16:515-526
  11. Kim SH, Jung JW, Moon JK, Woo SH, Cho YG, Jong SK, Kim HS (2006) Genetic Diversity and Relationship by SSR Markers of Korean Soybean Cultivars. Kor J Crop Sci 51:248-258
  12. Kim SW, Kwon YK, Seo JM, Woo TH, Liu JR (2011) Prediction and discrimination of taxonomic relationship within Orostachys species using FT-IR spectroscopy combined by multivariate analysis. J Plant Biotechnol 38:9-14 https://doi.org/10.5010/JPB.2011.38.1.009
  13. Kim SW, Ban SH, Chung H, Cho SH, Chung HJ, Choi PS, Yoo OJ, Liu JR (2004) Taxonomic discrimination of higher plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23:246-250 https://doi.org/10.1007/s00299-004-0811-1
  14. Kim SW, Cho SH, Chung H, Liu JR (2007) Genetic discrimination between catharanthus roseus cultivars by multivariate analysis of fourier transform infrared spectroscopy data. J Plant Biotechnol 34:201-205 https://doi.org/10.5010/JPB.2007.34.3.201
  15. Kim SW, Min SR, Kim JH, Park SK, Kim TI, Liu JR (2009) Rapid discrimination of commercial strawberry cultivars using fourier transform infrared spectroscopy data combined by multivariate analysis. Plant Biotechnol Rep 3:87-93 https://doi.org/10.1007/s11816-008-0078-z
  16. Lee HJ, Kim CH (1993) Sees germination and thermal adaptation of seedlings in Robinia pseudo-acacia. Kor J Ecol 16:501-514
  17. Lopez-Sanchez M, Ayora-Canada MJ, Molina-Diaz A (2010) Olive Fruit Growth and Ripening as Seen by Vibrational Spectroscopy. J Agric Food Chem. 58:82-87 https://doi.org/10.1021/jf902509f
  18. Parker FS (1983) Applications of infrared, Raman and resonance Raman spectroscopy in biochemistry Plenum Press New York
  19. Singh RJ, Hymowitz T (1988) The genomic relationships between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor Appl Genet 67: 705-711
  20. Thompson J, Nelson RL (1988) Core set primers to evaluate genetic diversity in soybean. Crop Sci 38:1356-1362
  21. Trygg J, Holmes E, Londstedt T (2007) Chemometrics in metabonomics. J Proteomes Res 6:467-479
  22. Wold H (1966) Estimation of principal components and related models by iterative least squares. In: K. R. Krishnaiah (ed.). Multivariate Analysis. Academic Press New York pp 391-420
  23. Wolkers WF, Oliver AE, Tablin F, Crowe JH (2004) A fourier transform infrared spectroscopy study of sugar glasses. Carb Res 339:1077-85 https://doi.org/10.1016/j.carres.2004.01.016
  24. Yee N, Benning LG, Phoenix VR, Ferris FG (2004) Characterization of metal-Cyanobacteria sorption reactions: A combined Macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775-82 https://doi.org/10.1021/es0346680
  25. Yoon MS, Lee JR, Kim CY, Cho GT, Cho YH, Choi YM, Park SG, Lee DJ, Lee GB, Baek HJ (2007) Genetic Diversity of Wild Soybean(G. soja) by Collecting Distance and Elevation in S. Korea using SSR Markers. Kor J Intl Agri 19:101-105

Cited by

  1. Rapid discrimination system of Chinese cabbage (Brassica rapa) at metabolic level using Fourier transform infrared spectroscopy (FT-IR) based on multivariate analysis vol.43, pp.3, 2016, https://doi.org/10.5010/JPB.2016.43.3.383
  2. Rapid metabolic discrimination betweenZoysia japonicaandZoysia sinicabased on multivariate analysis of FT-IR spectroscopy vol.43, pp.2, 2016, https://doi.org/10.5010/JPB.2016.43.2.213
  3. A Research of Component Analysis for Wetting Agent vol.13, pp.4, 2013, https://doi.org/10.9798/KOSHAM.2013.13.4.165
  4. Rapid selection of theanine-rich green tea (Camellia sinensis L.) trees and metabolites profiling by Fourier transform near-infrared (FT-IR) spectroscopy vol.9, pp.2, 2015, https://doi.org/10.1007/s11816-015-0344-9