DOI QR코드

DOI QR Code

Determination of cyromazine residues in agricultural commodities using HPLC-UVD/MS

HPLC-UVD/MS를 이용한 농산물 중 Cyromazine의 잔류분석법

  • Song, Lee-Seul (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Kim, Young-Hak (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Lee, Su-Jin (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Hwang, Young-Sun (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Kwon, Chan-Hyeok (Food Standards Division, Korea Food and Drug Administration) ;
  • Do, Jung-Ah (Food Chemical Residues Division, National Institution of Food and Drug Safety Evaluation) ;
  • Oh, Jae-Ho (Food Chemical Residues Division, National Institution of Food and Drug Safety Evaluation) ;
  • Im, Moo-Hyeog (Food Standards Division, Korea Food and Drug Administration) ;
  • Chang, Woo-Suk (Department of Biology, University of Texas-Arlington) ;
  • Lee, Young-Deuk (Division of Life and Environmental Science, Daegu University) ;
  • Choung, Myoung-Gun (Department of Herbal Medicine Resource, Kangwon National University)
  • 송이슬 (강원대학교 생약자원개발학과) ;
  • 김영학 (강원대학교 생약자원개발학과) ;
  • 이수진 (강원대학교 생약자원개발학과) ;
  • 황영선 (강원대학교 생약자원개발학과) ;
  • 권찬혁 (식품의약품안전청 식품기준과) ;
  • 도정아 (식품의약품안전평가원 화학물질과) ;
  • 오재호 (식품의약품안전평가원 화학물질과) ;
  • 임무혁 (식품의약품안전청 식품기준과) ;
  • 장우석 (텍사스주립대학교 생물학과) ;
  • 이영득 (대구대학교 생명환경학부) ;
  • 정명근 (강원대학교 생약자원개발학과)
  • Received : 2012.08.21
  • Accepted : 2012.09.07
  • Published : 2012.09.30

Abstract

A high-performance liquid chromatographic (HPLC) method was developed to determine residues of cyromazine, a triazine insecticide, in agricultural commodities. Cyromazine was extracted with 90% aqueous methanol from representative crops which comprised brown rice, oyster mushroom, oriental melon, watermelon, and Chinese cabbage. Following to evaporation of methanol in the extract, the aqueous concentrate was acidified to form the protonated cyromazine. Dichloromethane partition was then applied to remove nonpolar co-extractives in the aqueous phase. Strong cation-exchange chromatography using Dowex 50W-X4 resin was employed for final purification of the extract. Cyromazine was successfully separated on a Zorbax SB-Aq $C_{18}$ column showing high retention for polar compounds. Cyromazine was sensitively quantitated by ultraviolet absorption at 214 nm. Limit of quantitation (LOQ) of the method was 0.04 mg/kg irrespective of sample types. Each crops were fortified at 3 different concentrations of cyromazine for recovery test. Mean recoveries from samples fortified at LOQ~2.0 mg/kg in triplicate ranged 80.2~103.3% in five agricultural commodities. Relative standard deviations in recoveries were all less than 6%. A selected-ion monitoring LC/MS method with electrospray ionization in positive-ion mode was also provided to confirm the suspected residue. The proposed method was reproducible and sensitive enough to routinely determine and inspect the residue of cyromazine in agricultural commodities.

HPLC-UVD/MS를 이용하여 triazine계 살충제인 cyromazine의 농산물 중 잔류분석법을 확립하였다. 현미, 참외, 수박, 느타리버섯 및 배추 등 농산물 시료로부터 cyromazine을 90% methanol로 추출한 후 산성화에 의하여 이온화시킨 후 dichloromethane으로 세척함으로써 대부분의 비극성 간섭물질을 분배과정에서 제거할 수 있었다. 추출액은 최종적으로 양이온교환크로마토그래피법으로 정제하여 방해물질을 최소화하였다. 극성 화합물에 대하여 긴 머무름 특성을 나타내는 $C_{18}$ 칼럼을 선정, 이용함으로써 간섭물질과의 최적 분리조건을 확립하였다. 농산물 중 cyromazine의 정량한계(LOQ)는 0.04 mg/kg이었으며 정량한계, 정량한계의 10배 및 50배 수준으로 처리한 농산물 시료로부터의 회수율은 80.2~103.3% 범위였다. 농산물 시료의 종류 및 처리수준에 관계없이 분석오차는 6% 미만이었다. 또한 LC/MS SIM을 이용한 잔류분의 재확인법을 추가로 확립하였다. 본 연구에서 확립한 triazine계 살충제인 cyromazine의 잔류분석법은 검출한계, 회수율 및 분석오차 면에서 국제적 잔류분석기준을 만족할 뿐만 아니라 분석과정의 편이성을 고려할 때 일상적 잔류량 정량 및 검사를 위한 공정분석법으로 충분히 사용이 가능할 것으로 판단된다.

Keywords

References

  1. Armenta, S., G. Quintás, S. Garrigues and M. de la Guardia (2004) Determination of cyromazine in pesticide commercial formulations by vibrational spectrometric procedures. Analytica Chimica Acta 524: 257-264. https://doi.org/10.1016/j.aca.2004.02.063
  2. Carvalho, G. A., P. R. Reis, L. C. D. Rocha, J. C. Moraes, L. C. Fuini and C. C. Ecole (2003) Side-effects of insecticides used in tomato fields on Trichogramma pretiosum (Hymenoptera, Trichogrammatidae). Acta Scientiarum- Agronomy 25(2): 275-279.
  3. Chou, S. S., D. F. Hwang and H. F. Lee (2003) High performance liquid chromatographic determination of cyromazine and its derivative melamine in poultry meats and eggs. Journal of Food and Drug Analysis 11(4): 292-295.
  4. Codex Alimentarius Commission (2003) Guidelines on Good Laboratory Practice in Residue Analysis, CAC/GL 40- 1993, Rev. 1-2003, Rome, Italy.
  5. Crespo, D. C., R. E. Lecuona and J. A. Hogsette (2002) Strategies for controlling house fly populations resistant to cyromazine. Neotropical Entomology 31(1): 141-147. https://doi.org/10.1590/S1519-566X2002000100019
  6. Daborn, P. J., J. A. Mckenzie and P. Batterham (2000) Agenetic analysis of cyromazine resistance in Drsophila melanogaster (Diptera: Drosophilidae). J. Econ. Entomol. 93(3): 911-919. https://doi.org/10.1603/0022-0493-93.3.911
  7. Kamaruzzaman, A. H. M., A. M. S. Reza, K. A. M. S. H. Mondal and S. Parween (2006) Morphological abnormalities in Triboliun castaneum(Herbst) and Tribolium confusum Duval due to cyromazine and pirimiphos-methyl treatments alone or in combination. Invertebrate Survival J. 3: 97-102.
  8. Korea Food and Drug Administration (2009) Korean Food Standards Codex. Seoul, Korea.
  9. Kwon, C. H., M. I. Chang, M. H. Im, H. Choi, D. I. Jung, S. C. Lee, J. Y. Yu, Y. D. Lee, J. O. Lee and M. K. Hong (2008) Determination of mandipropamid residues in agricultural commodities using high-performance liquid chromatography with mass spectrometry. Analytical Sci. & Technoligy 21(6): 518-525.
  10. Lee, Y. D (2012) Handbook for the pesticide residue analytical methods of food code, 3rd ed., National Institution of Food and Drug Safety Evaluation, Cheongwon, Korea.
  11. Patakioutas, G., D. Savvas, C. Matakoulis, T. Sakellarides and T. Albanis (2007) Application and fate of cyromazine in a closed-cycle hydroponic ultivation of bean(Phaseolus vulgaris L.) J. Agric. Food Chem. 55: 9928-9935. https://doi.org/10.1021/jf071726i
  12. Pinto, M. C. and A. P. D. Prado (2001) Resistance of Musca domestica L. populations to cyromazine(Insect Growth Regulator) in Brazil. Mem. Inst. Oswaldo Cruz, Rio de Janeiro 96(5): 729-732. https://doi.org/10.1590/S0074-02762001000500027
  13. Sancho, J. V., M. Ibanez, S. Grimalt, O. J. Pozo and F. Hernandez (2005) Residue determination of cyromazine and its metabolite melamine in chard samples by ion-pair liquid chromatography coupled to electrospray tandem mass spectrometry. Analytica Chimica Acta 530: 237-243. https://doi.org/10.1016/j.aca.2004.09.038
  14. Vazirianzadeh, B., M. A. Jervis and N. A. C. Kidd (2007) The effect of oral application of cyromazine and trifluuron of house-fly larvae. Iranial J. Arthropod-Borne Dis. 1(2): 7-13.
  15. Walker, J. T., R. D. Oetting, J. C. Marcia and J. B. Melin (1997) Evaluation of newer chemicals for control of foliar nematode on begonia. J. Environ. Hort. 15(1): 16-18.
  16. Weintraub, P. G. (2001) Effects of cyromazine and abamectin on the ea leafminer Liriomyza huidobrensis(Diptera: Agromyzidae) and its parasitoid Diflyphus isaea (Hymenoptera: Eulophidae) in potatoes. Crop Protection 20: 207-213. https://doi.org/10.1016/S0261-2194(00)00128-9
  17. Yokley, R. A., L. C. Mayer, R. Rezaaiyan, M. E. Manuli and M. W. Cheun (2000) Analytical method for the determination of cyromazine and melamine residues in soil using LC-UV and GC-MSD. J. Agric. Food Chem. 48: 3352-3358. https://doi.org/10.1021/jf991231w
  18. US FDA (1999) Pesticide Analytical Manual, Vol 1: Multiresidue methods, Method 404 Benzimidazoles, 3rd ed., US Food and Drug Administration, USA.

Cited by

  1. Method Development and Validation for Analysis of Isopyrazam Residues in Agricultural Products vol.17, pp.2, 2013, https://doi.org/10.7585/kjps.2013.17.2.84