DOI QR코드

DOI QR Code

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential

혼합 메탄균과 반추위 섬유소 분해균 첨가가 메탄발생에 미치는 영향

  • Kim, Ji-Ae (The Graduate School of Bio and Information Technology, Hankyong National University) ;
  • Yoon, Young-Man (Biogas Research Center, Hankyong National University) ;
  • Kim, Chang-Hyun (The Graduate School of Bio and Information Technology, Hankyong National University)
  • 김지애 (한경대학교 바이오정보기술대학원) ;
  • 윤영만 (한경대학교 바이오가스연구센터) ;
  • 김창현 (한경대학교 바이오정보기술대학원)
  • Received : 2012.07.12
  • Accepted : 2012.08.16
  • Published : 2012.08.31

Abstract

The study investigated the biochemical methane potential (BMP) assay of cellulose supplementing with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups were consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS and M+RA+FS including control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 40 days at $38^{\circ}C$ and anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum was used. In results, 5% FS increased total biogas and methane production up to 10.4~22.7% and 17.4~27.5%, respectively, compared to other groups (p<0.05). Total solid (TS) digestion efficiency showed a similar trend to the total biogas and methane productions. Generally the TS digestion efficiency of the FS group was higher than that of other groups showing at the highest value of 64.2% in the 5% FS group. Volatile solid (VS) digestion efficiencies of 68.4 and 71.0% in the 5% FS and the 5% RF were higher than other groups. After incubation, pH values in all treatment groups were over 6.4 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that the hydrolysis stage for methane production in anaerobic batch reactors was the late-limiting stage compared with the methanogenesis stage, and especially, as the supplementation levels of F. succinogenes supplementation increased, the methane production was increased in the BMP assay compared with other microbial culture addition.

본 연구는 메탄생성에 직접적으로 관여하는 혼합 메탄균과 셀롤로스 등의 고분자 물질의 가수분해 반응에 활성이 뛰어난 반추위 내 혐기성 섬유소분해균 중에서 대표적인 Fibrobacter succinogenes, Ruminococcus flavefaciens 및 Ruminococcus albus를 biochemical methane potential (BMP) 시험에 첨가하였을 때 메탄 발생에 미치는 영향을 조사하고자 수행되었다. BMP시험은 멸균증류수를 첨가한 control과 각각의 미생물 배양액을 첨가한 혼합 메탄균 첨가구 (M), F. succinogenes 첨가구 (FS) R. flavefaciens 첨가구 (RF), R. albus 첨가구 (RA) 및 RA+FS 혼합첨가구와 M+RA+FS 혼합 첨가구로 총 7개 처리구로 각 처리구별 3반복으로 진행되었다. 미생물 배양액의 첨가량은 식종액과 기초혐기배지 (anaerobic basic medium) 혼합액 50 mL에 1% (0.5 mL), 3% (1.5 mL) 및 5% (2.5 mL) 씩 첨가 하였고 배양을 위한 기질로는 cellulose ($2.0g\;VS\;L^{-1}$)이 이용되었다. BMP 시험을 위해 40일간 배양이 지속되었고 중온소화를 위해 $38^{\circ}C$의 배양기에서 수행되었다. 실험의 결과 총 바이오가스 및 메탄 발생량은 5% FS에서 다른 처리구와 비교하여 각각 10.4~22.7% 및 17.4~27.5% 높았다 (p<0.05). 총고형물 (TS) 분해율도 가스발생 결과와 유사하였는데, 전반적으로 FS가 높게 나타났으며, 5% FS에서 64.2%로 가장 높았다. 휘발성 고형물 (VS) 분해율은 5% FS와 5% RF가 각각 68.4 및 71.0%로 가장 높았다. BMP 종료시 배양액내 pH는 모든 처리구가 6.4이상으로 메탄발효에 큰 영향을 주지 않았음을 알 수 있었다. 결론적으로 본 실험의 결과 혐기소화에 대한 회분식 배양에서는 메탄생성단계보다는 가수분해단계에서 특히, F. succinogenes 배양액의 첨가량이 증가할수록 메탄의 생성량을 증가시킴을 알 수 있었다.

Keywords

References

  1. Angelidaki, I. and B.K. Ahring. 2000. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci. Technol. 41:189-194.
  2. Angelidaki, I., S.P. Petersen, and B.K. Ahring. 1990. Effects of lipids on thermophilic and anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl. Microbiol. Biotechnolol. 33:469-472.
  3. APHA. 1998. Standard methods for the examination of water and wastewater. (20th ed.) American Public Health Association, Washington, DC, USA.
  4. Beuvink, J.M., S.F. Spoelstra, and R.J. Hogendrop. 1992. An automated method of measuring the time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth. J. Agri. Sci., 40:401-407.
  5. Bonmati A., X. Flotats, L. Mateu, and E. Campos. 2001. Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. Water Sci. Technol. 44:109-116.
  6. Bryant, M.P., N. Small, C. Bouma, and I.M. Robinson. 1958. Studies on the composition of the ruminal flora and fauna of young calves. J. Dairy Sci. 41:1747-1767. https://doi.org/10.3168/jds.S0022-0302(58)91160-3
  7. Chynoweth, D.P., C.E. Turick, J.M. Owens, D.E. Jerger, and M.W. Peck. 1993. Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg. 5:95-111. https://doi.org/10.1016/0961-9534(93)90010-2
  8. Clemens, J., M. Trimborn, P. Weiland, and B. Amon. 2006. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agri. Ecosyst. Environ. 112:171-177. https://doi.org/10.1016/j.agee.2005.08.016
  9. Danish Energy Agency. 1992. Update on centralized biogas plants.
  10. Dehority, B.A. 1963. Isolation and characterization of several cellulolytic bacteria from in vitro rumen fermentations. J. Dairy Sci. 46:217-222. https://doi.org/10.3168/jds.S0022-0302(63)89009-8
  11. Dehority, B.A. 2003. Rumen microbiology. Nottingham University Press, Nottingham, UK.
  12. Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics. 11:1. https://doi.org/10.2307/3001478
  13. Gerardi, M.H. 2003. The microbiology of anaerobic digesters. John Wiley & Sons, Inc., New York, USA.
  14. Gijen, H.J., K.B. Zwart, P.T., van Gelder, and G.D. Vogels. 1986. Continuous cultivation of rumen microorganisms, a system with possible application to the anaerobic degradation of lignocellulosic waste materials, Appl. Micro. Biotech. 25:155-162. https://doi.org/10.1007/BF00938940
  15. Hashimoto, A.G. 1989. Effect of inoculum/substrate ratio on methane yield and production rate from straw. Biol. Wastes. 28:247-255. https://doi.org/10.1016/0269-7483(89)90108-0
  16. Hungate, R.E. 1947. Studies on cellulose fermentation. III. The culture and isolation of cellulose-decomposing bacteria from the rumen of cattle. J. Bacteriol. 53:631-645.
  17. Hungate, R.E. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14:1-49.
  18. Hungate, R.E. 1963. Polysaccharide storage and growth efficiency in Ruminococcus albus. J. Bacteriol. 86:848-854.
  19. Lawrence, A.W. and P.L. McCarty. 1967. Kinetics of methane fermentation in anaerobic waste treatment. Technical report No. 75. Stanford, Califonia, USA.
  20. Leslie Grady, C.P., G.T. Daigger, and H.C. Lim. 1999. Biological Wastewater Treatment (2nd ed). p. 599-604. Marcel Dekker, Inc., NY, USA.
  21. Lettinga, G. 2001. Digestion and degradation, air for life. Water Sci. Technol. 44: 157-176.
  22. Ministry of Environment. 2009. Environmental white paper. ISBN 11-1480000-000586-10 (In Korean).
  23. Muller, H.W. and W. Trosch, 1986. Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production. Appl. Micro. Biotech. 24:180-185. https://doi.org/10.1007/BF00938793
  24. Odenyo, A.A., R.I. Mackie, and B.A. White. 1994. The use of 16S rRNA-targeted oiligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl. Environ. Microbiol. 60:3697-3703.
  25. Owen, W.P., D.C. Stuckey, J.B. Healy, L.Y. Young, and P.L. McCarty. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 13:485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  26. Rymer, C., and D.I. Givens. 2002. Relationships between patterns of rumen fermentation measured in sheep and in situ degradability and the in vitro gas production profile of the diet. Anim. Feed. Scie. Technol. 101:31-44. https://doi.org/10.1016/S0377-8401(02)00215-8
  27. SAS. 1999. Statistical Analysis Systems User's Guide. (8th ed.) SAS Institute Inc. Raleigh, NC, USA.
  28. Shelton, D.R. and J. Tiedije. 1984. General method for determining anaerobic biodegradation potential. Appl. Environ. Microbiol., 47:850-857.
  29. Schulman, M.D. and D. Valentino. 1976. Factors influencing rumen fermentation: effect of hydrogen on formation of propionate. J. Dairy. Sci. 59:1444-1451. https://doi.org/10.3168/jds.S0022-0302(76)84383-4
  30. Shin, H.S. Y.C. Song, and K.S. Jun. 1992. Pretreatment processes for enhanced anaerobic digestion of food waste. p. 451-454. In F. Cecchi et al. (ed.) Proceedings of international symposium on anaerobic digestion of solid waste. Venice, Italy.
  31. Speece, R. 1996. Anaerobic biotechnology for industrial wastewaters. p. 29-58. Archae Press, Nashville, TN, USA.
  32. Theodorou, M.K., D.R. Daivies, B.B. Nilsen, M.I.G. Lawrence, and A.P.J. Trinci. 1998. Principles of techniques that rely on gas measurement in ruminant nutrition. p. 55-63. E.R. Deaville et al. (ed.) In vitro techniques for measuring nutrient supply to ruminants. (Occasional publication, No. 22). British Society of Animal Science, UK.
  33. Theodorou, M.K., B.A. Williams, M.S. Dhanoa, A.B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed. Sci. Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  34. van Lier J.B., A. Tilche, B.K. Ahring, H. Macarie, R. Moletta, M. Dohanyo, L.W. Hulshoff Pol, P. Lens, and W. Werstraete. 2001. New perspectives in anaerobic digestion. Water Sci. Techno. 43:1-18.
  35. Williams, A., M. Amat-Marco, and M.D. Collins. 1996. Pylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of gram-positive bacteria. Int. J. Syst. Bacterol. 46:195-199. https://doi.org/10.1099/00207713-46-1-195

Cited by

  1. Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential with Pig Slurry vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.1049