DOI QR코드

DOI QR Code

Effect of the Pretreatment by Thermal Hydrolysis on Biochemical Methane Potential of Piggery Sludge

열가수분해 전처리가 양돈 슬러지의 메탄생산퍼텐셜에 미치는 영향

  • 김승환 (국립한경대학교 바이오가스 연구센터) ;
  • 김호 (고등기술연구원) ;
  • 김창현 (국립한경대학교 바이오가스 연구센터) ;
  • 윤영만 (국립한경대학교 바이오가스 연구센터)
  • Received : 2012.07.13
  • Accepted : 2012.08.13
  • Published : 2012.08.31

Abstract

The objective of this study was to investigate the organic solubilization (SCOD) and improvement of methane production for pig slurry by thermal hydrolysis. A sludge cake was pretreated by thermal hydrolysis at different reaction temperatures (200, 220, 250, $270^{\circ}C$). Ultimate methane potential (Bu) was determined at several substrate and inoculum (S/I) ratios (1:9, 3:7, 5:5, 7:3 in volume ratio) by biochemical methane potential (BMP) assay for 73 days. Pig slurry SCOD were obtained with 98.4~98.9% at the reaction temperature of $200{\sim}270^{\circ}C$. Theoretical methane potentials ($B_{th}$) of thermal hydrolysates at the reaction temperature of $200^{\circ}C$, $220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$ were 0.631, 0.634, 0.705, $0.748Nm^3\;kg^{-1}-VS_{added}$, respectively. $B_u$ of $200^{\circ}C$ thermal hydrolysate were decreased from $0.197Nm^3\;kg^{-1}-VS_{added}$ to $0.111Nm^3\;kg^{-1}-VS_{added}$ with the changes of S/I ratio from 1:9 to 7:3, and also $B_u$ of different thermal hydrolysates ($220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$) showed same tendency to $B_u$ of $200^{\circ}C$ thermal hydrolysate according to the changes of S/I ratio. Anaerobic biodegradability ($B_u/B_{th}$) of $200^{\circ}C$ thermal hydrolysate at different S/I ratios was decreased from 32.2% for S/I ratio of 1:9 to 17.6% for S/I ratio of 7:3. $B_u/B_{th}$ of $220^{\circ}C$, $250^{\circ}C$, and $270^{\circ}C$ thermal hydrolysat were decreased from 36.4% to 9.6%, from 31.3% to 0.8%, and from 26.6% to 0.8%, respectively, with the S/I ratio change, respectively. In this study, the rise of thermal reaction temperature caused the decrease of anaerobic digestibility and methane production while organic materials of pig slurry were more solubilized.

본 연구는 양돈슬러리의 혐기소화 효율 증진을 위하여 양돈슬러리를 고액분리 하고 이때 발생하는 슬러지케이크를 200, 220, 250, $270^{\circ}C$에서 각각 열가수분해 전처리하여 열가수분해 온도별 유기물의 가용화 효율과 혐기적 메탄생산 퍼텐셜을 분석하였다. 최종메탄생산퍼텐셜 ($B_u$)은 서로 다른 S/I 비율 (1:9, 3:7, 5:5, 7:3의 부피비)에서 73일간 혐기배양하여 구하였다. 양돈슬러리의 유기물 가용화율 ($S_{COD}$)은 $200{\sim}270^{\circ}C$ 열가수분해 반응에서 98.4~98.9%를 보였으며, 열가수분해액의 이론적 메탄생산퍼텐셜 ($B_{th}$)은 반응온도의 증가와 함께 증가하여 $200^{\circ}C$, $220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$에서 각각 0.631, 0.634, 0.705, $0.748Nm^3\;kg^{-1}-VS_{added}$로 나타났다. 열가수분해액의 최종메탄생산퍼텐셜 ($B_u$)은 $200^{\circ}C$의 열가수분해액에서 S/I 비율이 1:9에서 7:3으로 증가할수록 $0.197Nm^3\;kg^{-1}-VS_{added}$에서 $0.111Nm^3\;kg^{-1}-VS_{added}$로 감소하는 경향이 나타났으며, 다른 열가수분해 반응 온도 ($220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$)에서도 $200^{\circ}C$의 열가수분해액과 동일한 경향의 최종메탄생산퍼텐셜을 나타내었다. 유기물의 혐기적 분해율 ($B_u/B_{th}$)을 보면, $200^{\circ}C$ 열가수분해액은 S/I비율이 증가함에 따라 31.2%에서 17.6%까지 감소하였으며, $220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$의 열가수분해액에서 각각 36.4%에서 9.6%, 31.3%에서 0.8%, 26.6%에서 0.8%로 감소하는 것으로 나타나, 열가수분해 온도의 상승에 따라 유기물의 혐기적 분해능이 낮아졌다. 이러한 결과는 98% 대의 유기물 가용화율 ($S_{COD}$)을 보인 것과는 반대로 $250{\sim}270^{\circ}C$의 열가수분해액은 혐기소화에 분해저항성을 지니는 것으로 나타났다.

Keywords

References

  1. Ajandouz, E.H., V. Desseaux, S. Tazi, and A. Puigserver. 2008. Effect of temperature and pH on the kinetics of caramelistion, protein cross-linking and Maillard reactions in aqueous model systems. Food chem. 107:1244-1252. https://doi.org/10.1016/j.foodchem.2007.09.062
  2. Angelidaki, I. and B.K. Ahring. 1992. Effects of free long-chain fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biot. 37:808-812.
  3. APHA. 1998. Standard methods for the examination of water and wastewater, 20th ed.
  4. Ardic, I. and F. Taner. 2005. Effects of thermal, chemical and thermochemical pretreatments to increase biogas production yield of chicken manure. Fresenius Environmental Bulletin 14(5):373.
  5. Beuvink, J.M., S.F. Spoelstra, and R.J. Hogendrop. 1992. An automated method for measuring the time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth. J. Agri. Sci. 40:401-407.
  6. Bonmati, A., X. Flotats, L. Mateu, and E. Campos. 2001.  Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. Wat. Sci. Tech. 44(4): 109-116.
  7. Bougrier, C., J.P. Delgenès, and H. Carrère. 2008. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem. Eng. J. 139:236-244. https://doi.org/10.1016/j.cej.2007.07.099
  8. Boyle, W.C. 1976. Energy recovery from sanitary landfills-a review. In: Schlegel, H.G., and, J., Barnea (Eds.), Microbial Energy Conversion. Pergamon Press Oxford, 119-138.
  9. Carlsson, M., A. Lagerkvist, and F. Morgan-Sagastume. 2012. The effects of substrate pre-treatment on anaerobic digestion systems: A review. Waste Manage. (in press).
  10. Carrere, H., C. Dumas, A. Battimelli, D.J. Batstone, J.P. Delgenès, J.P. Steyer, and I. Ferrer. 2010. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 108(1-3):1-15.
  11. Dwyer, J., D. Starrenburg, S. Tait, K. Barr, D.J. Batstone, and P. Lant. 2008. Decreasing activated sludg thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Res. 45(18):4699-4709.
  12. Ferrer, I., S. Ponsa, F. Vázquez, and X. Font. 2008. Increasing biogas production by thermal(70${^{\circ}C}$) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 42:186-192. https://doi.org/10.1016/j.bej.2008.06.020
  13. Gossett, R.W., D.A. Brown, and D.R. Young. 1982. Predicting the bioaccumulation and toxicity of organic compounds. SCCWRP Bienn. Rep. 1981(82):149-156.
  14. Hamzawi, N., K.J. Kennedy, and D.D. McLean. 1998. Anaerobic digestion of co-mingled municipal solid waste and sewage sludge. Water Sci. Technol. 38(2):127-132. https://doi.org/10.1016/S0273-1223(98)00438-7
  15. Hansen, T.L., J.E. Schmidt, I. Angelidaki, E. Marca, J.C. Jansen, H. Mosbæk, and T.H. Christensen. 2004. Measurement of methane potentials of solid organic waste. Waste Manage. 24(4):393-400. https://doi.org/10.1016/j.wasman.2003.09.009
  16. Haug, R.T., D.C. Stuckey, J.M. Gossett, and P.L. McCarty. 1978. Effect of thermal pretreatment on digestibility and dewaterability of organic sludge. J. Water Pollut. Control Fed. 50:73-85.
  17. Hejnfelt, A. and I. Angelidaki. 2009. Anaerobic Digestion of Slaughterhouse By-Products. Biomass Bioenerg. 33(2009): 1046-1054. https://doi.org/10.1016/j.biombioe.2009.03.004
  18. Hendriks, A.T.W.M. and F. Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Techno. 100(1):10-18. https://doi.org/10.1016/j.biortech.2008.05.027
  19. Izumi, K., Y.K. Okishio, N. Nagao, C. Niwa, S. Yamamoto, and T. Toda. 2010. Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegrad. 64(7):601-608. https://doi.org/10.1016/j.ibiod.2010.06.013
  20. Jang, E.S., H.C. Ahn, M.C. Eo, and H. Kim. 2008. Enganced dewaterability and solubilisation characteristics of dewatered sewage sludge by thermal hydrolysis. Korea Soc. Waste Manage. 25(5):470-477.
  21. Kepp, U., I. Machenbach, N. Weisz, and O.E. Solheim. 2000. Enhanced stabilisation of sewage sludge through thermal hydrolysis-Three years of experience with full scale plant. Water Sci. Technol. 42:89-96.
  22. Kianmehr, P., W. Parker, and P. Seto. 2010. An evaluation of protocols for characterization of ozone impacts on WAS properties and digestibility. Bioresour. Technol. 101(22): 8565-8592. https://doi.org/10.1016/j.biortech.2010.06.061
  23. KREI. 2011. Prospect of production and utilization of energy in the rural sector and strategies for introducing clean energy farming system. KREI, Seoul, Korea.
  24. Lawrence, A.W. and P.L. McCarty. 1967. Kinetics of methane fermentation in anaerobic waste treatment. Department of Civil Engineering, Stanford University, PaloAlto, California.
  25. Lay, J.J., Y.Y. Li, and T. Noike. 1998. Development of bacterial population and Methanogenic activity in a laboratory-scale landfill bioreactor. Water Res. 32:3673-3679. https://doi.org/10.1016/S0043-1354(98)00137-7
  26. Luste, S. and S. Luostarinen. 2011. Enhanced methane production from ultrasound pre-treated and hygienized dairy cattle slurry. Waste Manage. 31:2174-2179. https://doi.org/10.1016/j.wasman.2011.04.012
  27. Ma, J., T.H. Duong, M. Smits, W. Verstraete, and M. Carballa. 2011. Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour. Technol., 102(2), 592-599. https://doi.org/10.1016/j.biortech.2010.07.122
  28. Martins, S.I.F.S. and M.A.J.S. Boekel. 2005. A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chem. 90:257-269. https://doi.org/10.1016/j.foodchem.2004.04.006
  29. Martins, S.I.F.S., W.M.F. Jongen, and M.A.J.S. Boekel. 2001. A review of maillard reation in food and implications to kinetic modelling. Trends food Sci. Technol. 11:364-373.
  30. MKE. 2009. The 3rd basic plan for the use and development of new-renewable energy (2009-2030) (in Korean).
  31. Mladenovska, Z., H. Hartmann, T. Kvist, M. Sales-Cruz, R. Gani, and B.K. Ahring. 2006. Thermal pretreatment of the solids fraction of manure: impact on biogas reactor perfromance and microbia community. Water Sci. Technol. 53(8): 59-67. https://doi.org/10.2166/wst.2006.236
  32. Owen, W.F., D.C. Stuckey, J.B. Healy, L.Y. Young, and P.L. MaCarty. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 12:485-492.
  33. Perez-Elvira, S.I., F. Fernandez-Polanco, M. Fernandez-Polanco, P. Rodriguez, and P. Rouge. 2008. Hydrothermal multivariable approach, full-scale feasibility study. Electron J. Biotechnol. 11(4).
  34. Pilli, S., P. Bhunia, S. Yan, R.J. Leblanc, R.D. Tyagi, and R.Y. Surampalli. 2011. Ultrasonic pretreatment of sludge: A review. Ultrason. Sonochem. 18(1):1-18. https://doi.org/10.1016/j.ultsonch.2010.02.014
  35. Sorensen, A.H., M. Winther-Nielsen, and B.K. Ahring. 1991. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Micro biol. biotechnol. 34:823-827.
  36. Stuckey, D.C. and P.L. McCarty. 1984. The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge. Water Res. 18(11):1343-1353. https://doi.org/10.1016/0043-1354(84)90002-2
  37. van Lier J.B., A. Tilche, B.K. Ahring, H. Macarie, R. Moletta, M. Dohanyo, L.W. Hulshoff Pol, P. Lens and W. Werstraete. 2001. New perspectives in anaerobic digestion. Water Sci. Technol. 43:1-18.
  38. Williams, A., M. Amat-Marco, and M.D. Collins. 1996. Pylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of gram-positive bacteria. Int. J. Syst. Bacterol. 46:195-199. https://doi.org/10.1099/00207713-46-1-195
  39. Yoneyama, N., H. Morimoto, C.X. Ye, H. Ashihara, K. Mizuno, and M. Kato. 2006. Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Mol Genet Genomics 275:125-135. https://doi.org/10.1007/s00438-005-0070-z
  40. Yoon, Y.M., C.H. Kim., Y.J. Kim, and H.T Pack. 2009. The economical evaluation of biogas production facility of pig waste. Korean Journal of Agricultural Management and Policy 36(1):137-157.

Cited by

  1. Effects of Substrate to Inoculum Ratio on Biochemical Methane Potential in Thermal Hydrolysate of Poultry Slaughterhouse Sludge vol.35, pp.2, 2016, https://doi.org/10.5338/KJEA.2016.35.2.12
  2. Energy Recovery Efficiency of Poultry Slaughterhouse Sludge Cake by Hydrothermal Carbonization vol.10, pp.11, 2017, https://doi.org/10.3390/en10111876