DOI QR코드

DOI QR Code

Effect of Mixer Structure on Turbulence and Mixing with Urea-water Solution in Marine SCR System

선박용 SCR 시스템에서 혼합기 구조에 따른 난류유동과 우레아 수용액의 혼합특성

  • 김태경 (부산대학교 기계공학부 대학원) ;
  • 성연모 (부산대학교 기계공학부 대학원) ;
  • 한승한 ((주)현대비엔지스틸) ;
  • 하상준 ((주)동신) ;
  • 최경민 (부산대학교 기계공학부) ;
  • 김덕줄 (부산대학교 기계공학부 기계기술연구원)
  • Received : 2012.07.25
  • Accepted : 2012.09.20
  • Published : 2012.09.30

Abstract

To improve the flow and mixing characteristics of marine SCR system, two different mixer including up-down and swirl type mixer were considered. The purpose of this study is to analyse turbulence intensity and uniformity index in detail and to improve the performance of SCR with respect to the mixer structure. The results showed that, the concentration uniformity index is improved by about 5% with the utilization of both mixers in the front of catalyst part. Although the RMS value and relative turbulence intensity increased after the up-down type mixer, it could observed that the value of two parameters decreased with the flow proceeding forward to the downstream. For the case of swirl type mixer, the decrease of RMS value and relative turbulence intensity were relatively smaller than that of up-down type mixer, and uniform distribution of relative turbulence intensity was observed. As a results, it could be concluded that the mixing effects and the distance of the two kinds of mixer were different.

선박용 SCR 시스템에서 유동 및 혼합특성을 개선하기 위해 상하유도 및 스월 형상의 혼합기가 고려되었다. 본 연구의 목적은 혼합기 구조에 따른 난류강도 및 균일지수(Uniformity Index)를 상세히 분석하여 SCR 성능을 개선하는 것이다. 그 결과, 촉매부 전단에서의 농도균일도는 혼합기를 사용하였을 경우 약 5% 개선됨을 알 수 있었다. 상하유도형 혼합기의 사용에 따라 주위에서 높은 RMS 수치 및 상대난류강도를 보이지만, 하류로 진행하면서 두 값은 감소하는 경향을 보였다. 스월형 혼합기의 경우 유동의 진행에 대해 RMS 수치와 상대난류강도의 감소가 비교적 적고 상대난류강도의 경우 상대적으로 균일한 분포를 보였다. 두 혼합기에서 발생하는 유동특성에 의해 혼합효과 및 혼합거리가 달랐음을 알 수 있었다.

Keywords

References

  1. A. Nishioka, K. Amou, H. Yolota et al, "A urea-dosing device for enhancing lowtemperature performance by active-ammonia production in a scr system," Society of Automotive Engineers Technical Paper, 2008- 01-1026, 2008.
  2. Y. Y. Ham, S. H. Lee, H. S. Lee et al, "Experimental study on $deNO_{x}$ characteristics of urea-scr system", Korean Society of Automotive Engineers, vol. 17, no. 2, pp.180-186, 2009.
  3. www.imo.org/ourwork/environment/pollution prevention/airpollution/pages/nitrogen-oxides-(nox)- --regulation-13.aspx; Accessed 25 Jul 2012.
  4. G. C. Kim, M. H. Park, J. K. Yoon et al, "A study for optimal design of the AIG to improve the performance of $deNO_{x}$ facilities installed in combined cycle plant," Journal of the Society of Airconditioning and Refrigerating Engineers of korea, vol. 19, no. 12, pp. 811-820, 2007.
  5. T. V. Johnson, "Diesel emission control in review," Society of Automotive Engineers, Technical Paper 2006-01-0030, 2006.
  6. S. J. Jeong, S. J. Lee, W. S. Kim et al, "Numerical study on the injector shape and location of urea-scr system of heavy-duty diesel engine for preventing $NH_{3}$ slip", Transactions of Korean Society of Automotive Engineers, vol. 14, no. 1, pp. 68-78, 2006.
  7. X. Zhang, M. Romzek, and C. Morgan, "3d numerical study of mixing characteristics of $NH_{3}$ in front of scr," Society of Automotive Engineers Technical Paper, 2006-01-3444, 2006.
  8. J. H. Lim, Y. B. Yoon, C. S. Song et al, "A numerical analysis on distribution of reductant with mixer application and various injection method in urea-scr system," Korean Society of Automotive Engineers, vol. 10, no. B0074, 2010.
  9. M. J. Park, H. S. Chang, and J. S. Ha, "Numerical study on the baffle structure for determining the flow characteristics in small scale scr system", Enviromental Engineering Research, vol. 32, no. 9, pp. 862-869, 2010.
  10. Fluent Inc, "Fluent User's Guide v6.3", Fluent Inc, pp. 375-397, 2006.
  11. S. H. Park, S. H. Rhee, "Numerical investigation of unsteady cavitating flow on a three- dimensional twisted hydrofoil," Korean Society for Computational Fluids Engineering, vol. 16, no. 3, pp. 37-46, 2011. https://doi.org/10.6112/kscfe.2011.16.3.037
  12. J. Gao, S. W. Park, Y. Wang et al, "Simulation and analysis of group-hole nozzle sprays using a gas jet superposition model," Fuel, vol 89, pp. 3758-3772, 2010. https://doi.org/10.1016/j.fuel.2010.07.019
  13. Stephen R. Turns, An Introduction to Combustion, Mc Graw Hill, 1999.
  14. H. S. Park, H. S. Yoon, M. C. Kim et al, "Study on the resultant vorticity numerical model of the propeller wake," Journal of the Society of Naval Architects of Korea, vol. 48, no. 2, pp. 141-146, 2011. https://doi.org/10.3744/SNAK.2011.48.2.141
  15. H. Weltens, H. Bressler, and F. Terres, "Optimization of catalytic converter gas flow distribution By cfd distribution," Korean Society of Automotive Engineers Technical Paper 930780, pp. 131-151, 1993.

Cited by

  1. Wall flow characteristics with static mixer position and housing geometry for preventing urea-salt deposition vol.37, pp.4, 2013, https://doi.org/10.5916/jkosme.2013.37.4.368
  2. Analysis of an internal flow with multi-perforated tube geometry in an integrated Urea-SCR muffler vol.37, pp.5, 2013, https://doi.org/10.5916/jkosme.2013.37.5.500
  3. A Numerical Study on Combustion and Emission Characteristics in Heavy Duty Diesel Engine with Post Injection vol.22, pp.1, 2014, https://doi.org/10.7467/KSAE.2014.22.1.193
  4. Study on NOx Reduction with Multi-Perforated Tube Geometry in Integrated Urea-SCR Muffler vol.38, pp.12, 2014, https://doi.org/10.3795/KSME-B.2014.38.12.1017
  5. Effect of Vane Angle of Swirl Type Mixer on Flow Mixing and Pressure Drop in Marine Selective Catalytic Reduction Systems vol.39, pp.4, 2015, https://doi.org/10.5916/jkosme.2015.39.4.443