DOI QR코드

DOI QR Code

Lateral Vibration Reduction of a Maglev Train Using U-shaped Electromagnets

U 자형 전자석을 사용하는 자기부상열차의 횡진동 저감 연구

  • 한종부 (충남대학교 메카트로닉스공학과) ;
  • 김기정 (충남대학교 메카트로닉스공학과) ;
  • 한형석 (한국기계연구원) ;
  • 김성수 (충남대학교 메카트로닉스공학과)
  • Received : 2012.05.02
  • Accepted : 2012.08.02
  • Published : 2012.11.01

Abstract

For an electromagnetic suspension (EMS)-type urban Maglev train using U-shaped electromagnets, both the vertical and the lateral air gaps for levitation are maintained only by the electromagnet. The train can run over curved rails without active lateral air gap control because the U-shaped electromagnet simultaneously produces both a levitation force and a guidance force, which is dependent on the levitation force. Owing to the passive control of the lateral air gap, the lateral vibration could exceed the limits of the lateral air gap and acceleration. In this study, dynamic analysis of a Maglev train is carried out, and the effectiveness of a lateral damper for vibration reduction is investigated. To more accurately predict the lateral vibration, a Maglev vehicle multibody model including air-sparing, guideway irregularities, electromagnets, and their controls is developed.

도시형 자기부상열차는 U 자형 전자석만을 사용하여 부상공극을 일정하게 유지하며 주행한다. U자형 전자석은 그 형상 특성으로 인하여 전자석 위치에 따라 안내력을 동시에 갖기 때문에 능동적 횡공극 제어가 없이도 차량을 레일에 따라 안내할 수 있는 장점을 갖는다. 그러나 횡공극을 제어하기 않기 때문에 횡진동이 증가하여 승차감 및 주행안정성에 악영향을 미칠 수 있다. 본 논문에서는 능동제어가 없이도 횡진동을 저감시키기 위한 방법으로 횡댐퍼 적용 효과에 대한 분석이 이루어진다. 이를 위하여 자기부상열차의 횡방향 고유진동특성을 우선 해석하고, 횡방향 댐퍼를 설치했을 때의 진동저감 효과 분석이 이루어진다. 정확한 횡진동 예측을 위하여 자기부상열차의 3 차원 다물체 동역학 모델을 사용하였다. 본 논문의 결과를 통해서 자기부상열차의 횡진동 저감을 위한 횡댐퍼 채택 제안에 활용하고자 한다.

Keywords

References

  1. Han, H. S., Yim, B. H., Lee, J. K., Hur, Y. C. and Kim S. S., 2009, "Effects of Guideway's Vibration Characteristics on the Dynamics of a Maglev Vehicle," Vehicle System Dynamics, Vol.47, No.3, pp. 309-234. https://doi.org/10.1080/00423110802054342
  2. Yim, B. H. and Han, H. S., 2008, "Curve Negotiation Analysis of a Maglev Vehicle Utilizing Electromagnetic Suspension System," Asian Conference on Multibody Dynamics.
  3. Lee, J. S., 2007, "Dynamic Interaction Analysis Between Actively Controlled Maglev and Guideway," Ph.D. Thesis, Sungkyunkwan University.
  4. Yabuno, H., Okamoto, T. and Aoshima, N., 2002, "Effect of Lateral Stiffness on Nonlinear Characteristics of Hunting Motion of a Railway Wheelset," Physics and Astronomy, Vol. 37, No. 6, pp. 555-568.
  5. CHI, M., Zhang. W., Zeng. J., Jin, X. and Zhu, M., 2008, "Influence of Hunting Motion on Ride Quality of Railway Vehicle," Journal of Vibration Engineering.
  6. Han, H. S., 2003, "A Study on the Dynamic Modeling of a Magnetic Levitation Vehicle," JSME International, Vol. 46, No. 4, pp. 1497-1501. https://doi.org/10.1299/jsmec.46.1497
  7. Lee, J. S., Lim, D. J. and Kim, M.Y., 2009, "Moving Urban Maglev-Vehicle Analysis Considering Nonlinear Magnetic Levitational Force Effect," COSEIK.
  8. Yim, B. H., Han, H. S., Lee, J. K. and Kim, S. S., 2009, "Curving Performance Simulation of an EMS-Type Maglev Vehicle," Vehicle System Dynamics, Vol. 47, No. 10, pp. 1287-1304. https://doi.org/10.1080/00423110802632071
  9. Sinha, P. K., 1987, Electromagnetic Suspension Dynamics & Control, Peter Peregrinus Ltd, London, United Kingdom.
  10. Han, H. S., Yim, B. H., Lee, N. J., Kim, Y. J. and Kim, B. H., 2008, "Prediction of Ride Quality of a Maglev Vehicle Using a Full Vehicle Multi-Body Dynamic Model," Vehicle System Dynamics, Submitted for Publication.
  11. LMS Virtual.lab Motion Users Manual, LMS International.
  12. Moon, W. K., Kim, H. W., Yoo, W. S. and Huh, N., 2007, "ADAMS Simulation to Determine Spring and Damper for an Omni-Directional Robot," KSAE, pp. 57-61.
  13. Hur, H. M., Park, J. H. and You, W. H., 2011, "Analysis on the Behavior of the Lateral Damper of the Roll-Stock Running Railway," KSPE, pp.1007-1008.
  14. Jeon, J. Y., Hur, H. M., Shin, Y. J., You, W. H. and Koo, J. S., 2011, "A Study on Lateral Damper for Improving Running Performance of Subway Vehicle," pp. 1856-1861.
  15. Coenraad, E., 2001, Modern Railway Track Second Edition, C. Esveld, Netherlands.
  16. Shabana, A. A., 2007, Railroad Vehicle Dynamics: A Computational Approach, Taylor & Francis Group, USA.

Cited by

  1. Study on Running Safety of EMS-Type Maglev Vehicle Traveling over a Switching System vol.38, pp.11, 2014, https://doi.org/10.3795/KSME-A.2014.38.11.1309
  2. Study on the Levitation Stability of Maglev Vehicle considering the Vibration of Steel Switch Track vol.18, pp.3, 2015, https://doi.org/10.7782/JKSR.2015.18.3.175
  3. Parametric Study on 3-way Switch Design Considering Levitation Stability of Maglev Train vol.19, pp.2, 2016, https://doi.org/10.7782/JKSR.2016.19.2.135