DOI QR코드

DOI QR Code

Characterization of Sol-Gel Derived Antimony-doped Tin Oxide Thin Films for Transparent Conductive Oxide Application

  • Woo, Dong-Chan (School of Materials Science and Engineering, Yeungnam University) ;
  • Koo, Chang-Young (School of Materials Science and Engineering, Yeungnam University) ;
  • Ma, Hong-Chan (School of Materials Science and Engineering, Yeungnam University) ;
  • Lee, Hee-Young (School of Materials Science and Engineering, Yeungnam University)
  • Received : 2012.05.18
  • Accepted : 2012.08.14
  • Published : 2012.10.25

Abstract

Antimony doped tin oxide (ATO) thin films on glass substrate were prepared by the chemical solution deposition (CSD) method, using sol-gel solution synthesized by non-alkoxide precursors and the sol-gel route. The crystallinity and electrical properties of ATO thin films were investigated as a function of the annealing condition (both annealing environments and temperatures), and antimony (Sb) doping concentration. Electrical resistivity, carrier concentration, Hall mobility and optical transmittance of ATO thin films were improved by Sb doping up to 5~8 mol% and annealing in a low vacuum atmosphere, compared to the undoped tin oxide counterpart. 5 mol% Sb doped ATO film annealed at $550^{\circ}C$ in a low vacuum atmosphere showed the highest electrical properties, with electrical resistivity of about $8{\sim}10{\times}10^{-3}{\Omega}{\cdot}cm$, and optical transmittance of ~85% in the visible range. Our research demonstrates the feasibility of low-cost solution-processed transparent conductive oxide thin films, by controlling the appropriate doping concentration and annealing conditions.

Keywords

References

  1. R. G. Gordon, MRS Bulletin 52 (2000) [DOI: 10.1557/mrs2000.151].
  2. A. N. Banerjee, and K. K. Chattopadhyay, Prog. Cryst. Growth Charact. Mater. 50 52 (2005) [DOI: 10.1016/j.pcrysgrow.2005.10.001].
  3. H. Hosono, Thin Solid Films. 515 6000 (2007) [DOI: 10.1016/j.tsf.2006.12.125].
  4. M. Batzill, and U. Diebold, Prog. Surf. Sci. 79, 47 (2005) [DOI: 10.1016/j.progsurf.2005.09.002].
  5. D. S. Amma, V. K. Vaidyan, and P. K. Manoj, Master. Chem. Phys. 93 194 (2005) [DOI: 10.1016/j.matchemphys.2005.03.045].
  6. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett. 70 1348 (1997) [DOI: 10.1063/1.118575].
  7. T. Maruyama and K. Fukui, J. Appl. Phys. 70 3848 (1991) [DOI: 10.1063/1.349189].
  8. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, Thin Solid Films. 445 263 (2003) [DOI: 10.1016/S0040-6090(03)01158-1].
  9. J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, Appl. Phys. Lett. 85 3134 (2004) [DOI: 10.1063/1.1803935].
  10. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature 389 939 (1997) [DOI: 10.1038/40087].
  11. A. Kudo, H. Yanagi, H. Hosono, H. Kawazoe, Appl. Phys. Lett. 73 220 (1998) [DOI: 10.1063/1.121761].
  12. B. Russo, and G. Z. Cao, Appl. Phys. A 90 311 (2008) [DOI: 10.1007/s00339-007-4274-4].
  13. Z. Zhao, D. L. Morel, and C. S. Ferekides, Thin Solid Films. 413 203 (2002) [DOI: 10.1016/S0040-6090(02)00344-9].
  14. A. L. Dawar, and J. C. Joshi, J. Mater. Sci. 19 1 (1984) [DOI: 10.1007/BF00552989].
  15. A. V. Singh, R. M. Mehra, A. Yoshida, and A. Wakahara. J. Appl. Phys. 95 3640 (2004) [DOI: 10.1063/1.1667259].
  16. S. W. Lee, Y. W. Kim, and H. D. Chen, Appl. Phys. Lett. 78 350 (2001) [DOI: 10.1063/1.1337640].
  17. S. R. Dhage, and V. Ravi, Appl. Phys. Lett. 83 4539 (2003) [DOI: 10.1063/1.1631390].
  18. J. C. Manifacier, L. Szepessy and R. Stuck, Mater. Res. Bull. 14 163 (1979) [DOI: 10.1016/0025-5408(79)90115-6].
  19. R. D. Tarey, and T. A. Raju, Thin Solid Films. 128 181 (1985) [DOI: 10.1016/0040-6090(85)90070-7].
  20. T. Karasawa, and Y. Miyata, Thin Solid Films. 223 135 (1993) [DOI: 10.1016/0040-6090(93)90737-A].
  21. T. D. Senguttuvan, and L. K. Malhotra, Thin Solid Films. 289 22 (1996) [DOI: 10.1016/S0040-6090(96)08921-3].
  22. M. Kojima, H. Kato, and M. Gatto, Philosophical Maganzine B, 73 289 (1996) [DOI: 10.1080/01418639609365825].
  23. Y. J. Lin, C. J. Wu, Surf. Coat. Technol. 88 239 (1996) [DOI: 10.1016/S0257-8972(96)02926-X].
  24. K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films. 102 1 (1983) [DOI: 10.1016/0040-6090(83)90256-0].
  25. T. Tsurumi, S. Nishizawa, N. Ohashi, and T. Ohgaki, Jpn. J. Appl. Phys. 38 3682 (1999) [DOI: 10.1143/JJAP.38.3682].
  26. M. A. Aegerter, A. Reich, D. Ganz, G. Gasparro, J. Putz, and T. Krajewski, J. Non-Cryst. Solids. 218 123 (1997) [DOI: 10.1016/S0022-3093(97)00134-8].
  27. S. S. Park, H. Zheng, and J. D. Mackenzie, Materials Letters. 22 175 (1995) [DOI: 10.1016/0167-577x(94)00241-X].
  28. C. Terrier, J. P. Chatelon, J. A. Roger, R. Berjoan, and C. Dubois, J. Sol-Gel Sci.Technol.10 75 (1997) [DOI: 10.1023/A:1018388306674].
  29. A. Rohatgi, T. R. Viverito, and L. H. Slack, J. Am. Ceram. Soc. 57 278 (1974) [DOI: 10.1111/j.1151/2916.1974.tb10897.X].

Cited by

  1. Optimization of thermoelectric properties of metal-oxide-based polymer composites vol.131, pp.6, 2014, https://doi.org/10.1002/app.40038
  2. Solution-Derived Amorphous Yttrium Gallium Oxide Thin Films for Liquid Crystal Alignment Layers vol.17, pp.2, 2016, https://doi.org/10.4313/TEEM.2016.17.2.109
  3. Electrical and Optical Properties of Sb-Doped SnO2 Transparent Conductive Films Fabricated by Using Electrospinning vol.25, pp.4, 2015, https://doi.org/10.3740/MRSK.2015.25.4.177
  4. Effect of aging heat time and annealing temperature on the properties of nanocrystalline tin dioxide thin films vol.31, pp.12, 2017, https://doi.org/10.1142/S0217984917501147
  5. Transparent Conducting Aerogels of Antimony-Doped Tin Oxide vol.6, pp.21, 2014, https://doi.org/10.1021/am505115x
  6. Enhancement and optimization of ATO nano-crystalline films properties by the addition of acetylacetone as modifier in the sol-gel process vol.30, pp.5, 2015, https://doi.org/10.1007/s11595-015-1243-1
  7. High-performance Sb:SnO2 Compact Thin Film Based on Surfactant-free and Binder-free Sb:Sn3O4 Suspension vol.31, pp.8, 2015, https://doi.org/10.1016/j.jmst.2014.12.011
  8. Electrochemical and fluorescence properties of SnO2 thin films and its antibacterial activity vol.143, 2015, https://doi.org/10.1016/j.saa.2015.02.034