DOI QR코드

DOI QR Code

Rhodamine 6G Based New Fluorophore Chemosensor Toward Hg2+

  • Son, Young-A (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Park, June-Min (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • Received : 2012.08.23
  • Accepted : 2012.09.22
  • Published : 2012.09.27

Abstract

Rhodamine dyes belong to xanthene family has excellent photostability and photophysical properties. In rhodamine dyes, Rhodamine 6G and its precursors also have xanthene chromophore and it shows high fluorescent quantum yield. Rhodamine 6G derivates are simple to synthesis and its high sensitivity and water solubility are suitable as good chemosensor. In this regard, Rhodamine 6G derivates which have selectivity to specific metal cation can used to detect various heavy metal ions. In this study, rhodamine 6G derivatives were synthesized by reaction of rhodamine 6G hydrazide and glyoxal and 4-phenyl thiosemicarbazide and it showed colorimetric and fluorescence sensing toward $Hg^{2+}$ ion. This novel chemosensor was analyzed and measured on UV-Vis and fluorescence spectrophotometer. HOMO/LUMO values were also calculated by computational calculation.

Keywords

References

  1. A. Guerri, F. Costela, A. Figuera, J. M. Florido, F. Sastre, and R. Sastre, Laser Action from Rhodamine 6G-doped Poly(2-hydroxyethyl methacrylate) Matrices with Different Crosslinking Degrees, Chem. Phys. Lett., 209(4), 352(1993). https://doi.org/10.1016/0009-2614(93)80029-O
  2. S. B. O'Reilly, B. Lettmeier, R. M. Gothe, C. Beinhoff, U. Siebert, and G. Drasch, Mercury as a Serious Health Hazard for Children in Gold Mining Areas, Environmental Research, 107(1), 89(2008). https://doi.org/10.1016/j.envres.2008.01.009
  3. N. E. Dziewonsky and K. B. Dtsch, Zur Kenntniss Der Rhodamine, Chem. Ges., 38(3), 3516(1905). https://doi.org/10.1002/cber.190503803186
  4. L. F. Zhang, J. L. Zhao, X. Zeng, L. Mu, X. K. Jiang, M. Deng, J. X. Zhang, and G. Wei, Tuning with pH: The Selectivity of a New Rhodamine B Derivative Chemosensor for $Fe^{3+}$ and $Cu^{2+}$, Sensors and Actuators B, 160(1), 662(2011). https://doi.org/10.1016/j.snb.2011.08.045
  5. K. P. Prathish, D. James, J. Jaisy, and T. P. Rao, Dual Optoelectronic Visual Detection and Quantification of Spectroscopically Silent Heavy Metal Toxins: A Multi-measurand Sensing Strategy Based on Rhodamine 6G as Chromo or Fluoro Ionophore, Analytica Chimica Acta, 647(1), 84(2009). https://doi.org/10.1016/j.aca.2009.04.044
  6. Y. Ma, X. T. Zhang, Z. S. Guan, Y. A. Cao, and J. N. Yao, Effects of Zinc(II) and Iron(III) Doping of Titania Films on Their Photoreactivity to Decompose Rhodamine B, Journal of Materials Research, 16(10), 2928(2001). https://doi.org/10.1557/JMR.2001.0402
  7. X. Chen, T. Pradhan, F. Wang, J. S. Kim, and J. Yoon, Fluorescent Chemosensors Based on Spiroring -Opening of Xanthenes and Related Derivatives, Chem. Rev., 112(3), 1910(2012). https://doi.org/10.1021/cr200201z
  8. Y. L. Kun, Y. Liu, Y. Han, and D. Xue, Interaction of Rhodamine B with BaMoO4 Nanoparticles in Different Reverse Micelles, Huaxue Xuebao, 63(1), 18(2005).
  9. H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim, and J. Yoon, A New Trend in Rhodamine-Based Chemosesnors: Application of Spirolactam Ring-Opening to Sensing Ions, Chem. Soc. Rev., 37, 1465(2008). https://doi.org/10.1039/b802497a
  10. Y. Xiang, A. Tong, P. Jin, and Y. Ju, New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(II) with High Selectivity and Sensitivity, Org. Lett., 8(13), 2863(2006). https://doi.org/10.1021/ol0610340
  11. Z. Zhang, Y. Zheng, W. Hang, X. Yan, and Y. Zhao, Sensitive and Selective Off-on Rhodamine Hydrazide Fluorescent Chemosensor for Hypochlorous Acid Detection and Bioimaging, Talanta, 85(1), 779(2011). https://doi.org/10.1016/j.talanta.2011.04.078
  12. H. Li, J. Fan, F. Song, H. Zhu, J. Du, S. Sun, and X. Peng, Fluorescent Probes for $Pd^{2+}$ Detection by Allylidene-Hydrazone Ligands with Excellent Selectivity and Large Fluorescence Enhancement, Chem. Eur. J., 16(41), 12349(2010). https://doi.org/10.1002/chem.201000796
  13. T. Kim, K. Jang and S. Jeon, Synthesis of Red Disperse Dyes with Various Diazo Components and Coloration of Unmodified Pure Polypropylene Fibers, Textile Coloration and Finishing(J. Korean Soc. Dyers & Finishers), 22(1), 1(2010). https://doi.org/10.5764/TCF.2010.22.1.001
  14. E. M. Lee, S. Y. Gwon, B. C. Ji, and S. H. Kim, Thermo- and Acid/Base-induced Spectral Switching of a Poly(N-isopropylacrylamide) Copolymer Containing Benzopyran-based D-${\pi}$-A type Dye Units, Textile Coloration and Finishing(J. Korean Soc. Dyers & Finishers), 22(3), 181(2010). https://doi.org/10.5764/TCF.2010.22.3.181
  15. J. Wang and X. Qian, A Series of Polyamide Receptor Based PET Fluorescent Sensor Molecules: Positively Cooperative $Hg^{2+}$ Ion Binding with High Sensitivity, Org. Lett., 8(17), 3721(2006). https://doi.org/10.1021/ol061297u
  16. P. M. Carthy, Simplified Experimental Route for Obtaining Job's Curve, Analytical Chemistry, 50(14), 2165(1978). https://doi.org/10.1021/ac50036a059
  17. B. Delley, An All-Electron Numerical Method for Solving The Local Density Functional for Polyatomic Molecules, J. Chem. Phys., 92(1), 508(1990). https://doi.org/10.1063/1.458452
  18. B. Delley, From Molecules to Solids with the $DMol^3$ Approach, J. Chem. Phys., 113(18), 7756(2000). https://doi.org/10.1063/1.1316015
  19. A. D. Boese and N. C. Handy, A New Parametrization of Exchange-Correlation Generalized Gradient Approximation Functionals, J. Chem. Phys., 114(13), 5497(2001). https://doi.org/10.1063/1.1347371

Cited by

  1. Development of Rhodamine-Based Fiber Optic Sensor for Detection of Mercury in Aqueous Environments vol.23, pp.3, 2014, https://doi.org/10.5369/JSST.2014.23.3.173
  2. “Turn-on” fluorescent and colorimetric determination of Cu2+ ions in aqueous media based on a Rhodamine-N-phenyl Semicarbazide derivative vol.16, pp.5, 2015, https://doi.org/10.1007/s12221-015-0953-5
  3. Amine Gases Detecting Studies using the Compounds on the Urethane Nano Web and Laminating Film vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.70
  4. Spectral Properties of a pH Responsive Water Soluble Spironaphthoxazine and Its Multi-Switching Property vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.18
  5. Anthraquinone-carbamodithiolate Assembly as Selective Chromogenic Chemosensor for Fe3+ vol.25, pp.1, 2013, https://doi.org/10.5764/TCF.2013.25.1.13
  6. Detection of Zinc(II) by a Fluorescence Chemosensor Based on Benzofuran in Aqueous Media and Live Cells pp.12295949, 2018, https://doi.org/10.1002/bkcs.11608