DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties at Room and Elevated Temperatures in AM50-0.3 wt%CaO Alloy

AM50-0.3 wt%CaO 합금의 미세조직과 상·고온 기계적 특성

  • Cho, Eun-Ho (Advanced Fusion Process R&D Group, Korea Institute of Industrial Technology) ;
  • Jun, Joong-Hwan (Advanced Fusion Process R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Young-Jik (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 조은호 (한국생산기술연구원 융합신공정연구그룹) ;
  • 전중환 (한국생산기술연구원 융합신공정연구그룹) ;
  • 김영직 (성균관대학교 신소재공학부)
  • Received : 2012.08.09
  • Accepted : 2012.08.31
  • Published : 2012.10.27

Abstract

The present study is intended to comparatively investigate the changes in microstructure and tensile properties at room and elevated temperatures in commercial AM50(Mg-5%Al-0.3%Mn) and 0.3 wt%CaO added ECO-AM50 alloys produced by permanent mould casting. The typical microstructure of AM50 alloy was distinctively characterized using two intermetallic compounds, ${\beta}(Mg_{17}Al_{12})$ and $Al_8Mn_5$, along with ${\alpha}$-(Mg) matrix in an as-cast state. The addition of a small amount of CaO played a role in reducing dendrite cell size and quantity of the ${\beta}$ phase in the AM50 alloy. It is interesting to note that the added CaO introduced a small amount of $Al_2Ca$ adjacent to the ${\beta}$ compounds, and that inhomogeneous enrichment of elemental Ca was observed within the ${\beta}$ phase. The ECO-AM50 alloy showed higher hardness and better YS and UTS at room temperature than did the AM50 alloy, which characteristics can be mainly ascribed to the finer-grained microstructure that originated from the CaO addition. At $175^{\circ}C$, higher levels of YS and UTS and higher elongation were obtained for the ECO-AM50 alloy, demonstrating that even 0.3 wt%CaO addition can be beneficial in promoting the heat resistance of the AM50 alloy. The combinational contributions of enhanced thermal stability of the Ca-containing ${\beta}$ phase and the introduction of a stable $Al_2Ca$ phase with high melting point are thought to be responsible for the improvement of the high temperature tensile properties in the ECO-AM50 alloy.

Keywords

References

  1. B. L. Mordike and T. Ebert, Mater. Sci. Eng., 302, 37 (2001). https://doi.org/10.1016/S0921-5093(00)01351-4
  2. S. K. Kim, C. W. Jang, J. H. Lee, C. H. Jung, Y. G. Seo and C. G. Kang, Kor. J. Mater. Res., 16, 516 (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.8.516
  3. J. K. Lee and S. K. Kim, Mater. Trans., 52, 1483 (2011). https://doi.org/10.2320/matertrans.M2010397
  4. S. H. Ha, J. K. Lee and S. K. Kim, Mater. Trans., 49, 1081 (2008). https://doi.org/10.2320/matertrans.MC200786
  5. D. I. Jang, Y. O. Yoon, S. B. Jung and S. K. Kim, Mater. Trans., 49, 976 (2008). https://doi.org/10.2320/matertrans.MC200749
  6. H. K. Lim, S. K. Kim and D. H. Kim, J. Korean Foundry Soc., 32, 44 (2012). https://doi.org/10.7777/jkfs.2012.32.1.044
  7. J. H. Seo and S. K. Kim, J. Korean Foundry Soc., 31, 11 (2011). https://doi.org/10.7777/jkfs.2011.31.1.011
  8. J. H. Seo and S. K. Kim, Mater. Sci. Forum, 620, 291 (2009). https://doi.org/10.4028/www.scientific.net/MSF.620-622.291
  9. J. K. Lee and S. K. Kim, Trans. Nonferrous Met. Soc. China, 21, supplement 1, s23 (2011). https://doi.org/10.1016/S1003-6326(11)61054-6
  10. Q. Wang, W. Chen, X. Zeng, Y. Lu, W. Ding, Y. Zhu, X. Xu and M. Mabuchi, J. Mater. Sci., 36(12), 3035 (2001). https://doi.org/10.1023/A:1017927109291
  11. D. Zhou, J. Liu, J. Zhang and P. Peng, Trans. Nonferrous Met. Soc. China, 17, 250 (2007). https://doi.org/10.1016/S1003-6326(07)60080-6
  12. A. Srinivasan, J. Swaminathan, M. K. Gunjan, U. T. S. Pillai and B. C. Pai, Mater. Sci. Eng., 527, 1395 (2010). https://doi.org/10.1016/j.msea.2009.10.008
  13. A. Kielbus, T. Rzychon and R. Cibis, J. AMME, 18, 135 (2006).
  14. G. Wu, Y. Fan, H. Gao, C. Zhai and Y. P. Zhu, Mater. Sci. Eng., 408, 255 (2005). https://doi.org/10.1016/j.msea.2005.08.011
  15. M. Liu, Q. Wang, Z. Liu, G. Yuan, G. Wu, Y. Zhu and W. Ding, J. Mater. Sci. Lett., 21, 1281 (2002). https://doi.org/10.1023/A:1016567421956
  16. M. Regev, E. Aghion and A. Rosen, Mater. Sci. Eng., 234-236, 123 (1997). https://doi.org/10.1016/S0921-5093(97)00215-3

Cited by

  1. Corrosion Behavior of Mg-Al-Zn-CaO Alloy vol.33, pp.3, 2013, https://doi.org/10.7777/jkfs.2013.33.3.127
  2. Effect of CaO Addition on Microstructure and Damping Capacity of AM50 Magnesium Alloy vol.54, pp.3, 2013, https://doi.org/10.2320/matertrans.M2012308