DOI QR코드

DOI QR Code

Finite-Difference Time-Domain Calculation of Light Scattering Efficiency for Ag Nanorings

유한차분 시간영역 방법을 이용한 Ag 나노링 구조의 산란효과

  • Lee, Tae-Soo (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Jeong, Jong-Ryul (Graduate School of Green Energy Technology, Chungnam National University)
  • 이태수 (충남대학교 녹색에너지기술전문대학원) ;
  • 정종율 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2012.08.17
  • Accepted : 2012.09.17
  • Published : 2012.10.27

Abstract

Enhancement of light trapping in solar cells is becoming increasingly urgent for the development of next generation thin film solar cells. One of the possible candidates for increasing light trapping in thin film solar cells that has emerged recently is the use of scattering from metallic nanostructures. In this study, we have investigated the effects of the geometric parameters of Ag nanorings on the light scattering efficiency by using three dimensional Finite Different Time Domain (FDTD) calculations. We have found that the forward scattering of incident radiation from Ag nanorings strongly depends on the geometric parameters of the nanostructures such as diameter, height, etc. The forward scattering to substrate direction is increased as the outer diameter and height of the nanorings decrease. In particular, for nanorings larger than 200 nm, the inner diameter of Ag nanorings should be optimized to enhance the forward scattering efficiency. Light absorption and scattering efficiency calculations for the various nanoring arrays revealed that the periodicity of nanorings arrays also plays an important role in the absorption and the scattering efficiency enhancement. Light scattering efficiency calculations for nanoring arrays also revealed that enhancement of scattering efficiency could be utilized to enhance the light absorption through the forward scattering mechanism.

Keywords

References

  1. F. J. Beck, A. Polman and K. R. Catchpole. J. Appl. Phys., 105, 114310 (2009). https://doi.org/10.1063/1.3140609
  2. L. Tsakalakos, Nanotechnology for Photovoltaics, p. 391, CRC Press, FL, USA (2010).
  3. H. A. Atwater and A. Polman, Nat. Mater., 9(3), 205 (2010). https://doi.org/10.1038/nmat2629
  4. J. W. Lee, Optical Science and Technology, 15(1), 49 (2011) (in Korean).
  5. Y. J. Kim, J. S. Cho, J. C. Lee, J. S. Wang, J. S. Song and J. H. Yoon, Kor. J. Mater. Res., 19(5), 245 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.5.245
  6. V. E. Ferry, J. N. Munday and H. A. Atwater, Adv. Mater., 22, 4794 (2010). https://doi.org/10.1002/adma.201000488
  7. K. R. Catchpole and A. Polman, Optic. Express, 16, 21793 (2008). https://doi.org/10.1364/OE.16.021793
  8. D. M. Schaadt, B. Feng and E. T. Yu, Appl. Phys. Lett., 86, 063106 (2005). https://doi.org/10.1063/1.1855423
  9. D. Derkacs, S. H. Lim, P. Matheu, W. Mar and E. T. Yu, Appl. Phys. Lett., 89, 093103 (2006). https://doi.org/10.1063/1.2336629
  10. S. Pillai, K. R. Catchpole, T. Trupke and M. A. Green, J. Appl. Phys., 101, 093105 (2007). https://doi.org/10.1063/1.2734885
  11. M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth and D. Meissner, Sol. Energ. Mater. Sol. Cell., 61, 97 (2000). https://doi.org/10.1016/S0927-0248(99)00100-2
  12. B. P. Rand, P. Peumans and S. R. Forrest, J. Appl. Phys., 96, 7519 (2004). https://doi.org/10.1063/1.1812589
  13. A. J. Morfa, K. L. Rowlen, T. H. Reilly III, M. J. Romero and J. V. D. Lagemaat, Appl. Phys. Lett., 92, 013504 (2008). https://doi.org/10.1063/1.2823578
  14. R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui and A. Burger, Appl. Phys. Lett., 91, 191111 (2007). https://doi.org/10.1063/1.2807277
  15. C. Hagglund, M. Zach and B. Kasemo, Appl. Phys. Lett., 92, 013113 (2008). https://doi.org/10.1063/1.2830817
  16. K. R. Catchpole and A. Polman, Appl. Phys. Lett., 93, 191113 (2008). https://doi.org/10.1063/1.3021072
  17. C. Huang, J. Ye, S. Wang, T. Stakenborg and L. Lagae, Appl. Phys. Lett., 100, 173114 (2012). https://doi.org/10.1063/1.4707382
  18. X. F. Han, Z. C. Wen and H. X. Wei, J. Appl. Phys., 103, 07E933 (2008). https://doi.org/10.1063/1.2839774
  19. FDTD solutions (On the web). Retrieved August 1, 2012 from http://www.lumerical.com

Cited by

  1. Localized Surface Plasmon Resonance Coupling in Self-Assembled Ag Nanoparticles by Using 3-Dimensional FDTD Simulation vol.24, pp.8, 2014, https://doi.org/10.3740/MRSK.2014.24.8.417