DOI QR코드

DOI QR Code

Effect of Sodium Caseinate Hydrolysates on Angiotensin-I Converting Enzyme Inhibition Activity

Sodium Caseinate 가수분해물의 Angiotensin-I Converting Enzyme 저해효과에 관한 연구

  • 이건봉 (서울우유협동조합 중앙연구소) ;
  • 신용국 (서울우유협동조합 중앙연구소) ;
  • 백승천 (서울우유협동조합 중앙연구소)
  • Received : 2011.12.07
  • Accepted : 2012.09.13
  • Published : 2012.10.31

Abstract

This study was carried out to identify the ACE (Angiotensin converting enzyme) inhibitory activity of casein hydrolysates for development of anti-hypertensive hydrolysates. Sodium caseinate was treated with six kinds of commercial proteases such as Flavourzyme, Protamex, Neutrase 1.5, Alcalase, Protease M, and Protease S for 8 h individually, and was then treated with the enzyme combination for 4 h at $45^{\circ}C$. The hydrolysate which had the highest ACE inhibitory effect was then hydrolysed successively with three digestive enzymes: pepsin, trypsin, and ${\alpha}$-chymotrypsin, at $37^{\circ}C$ for 4 h under conditions mimicking those of the gastrointestinal tract. UF (ultra filtration) treatment was applied to one of the secondary hydrolysates to determine ACE inhibitory activity. When sodium caseinate was hydrolysed by commercial proteases, the degree of hydrolysis (DH) showed 2.54 to 4.25% and after secondary hydrolysis, DH showed 4.30 to 5.22%. ACE inhibitory activity and $IC_{50}$ values decreased, and inhibition rates increased during hydrolysis. Protamex treatment showed the lowest $IC_{50}$ value ($516{\mu}g/mL$) and Flavourzyme hydrolysate showed the highest $IC_{50}$value ($866{\mu}g/mL$). As the first hydrolysate was treated with Flavourzyme, the ACE inhibitory activity increased. Neutrase hydrolysate had the highest activity with an $IC_{50}$ value ($282{\mu}g/mL$). When Neutrase plus Flavourzyme treatment was hydrolyzed by digestive enzymes, the $IC_{50}$ value ($597{\mu}g/mL$) was decreased statistically (p<0.05). As Neutrase plus Flavourzyme hydrolysate is treated by UF with MW cut-off 10,000, permeate showed $273{\mu}g/mL$ of $IC_{50}$ value, showed no difference, but retentate which has over MW 10,000 showed statistically different $IC_{50}$ value, $635{\mu}g/mL$ (p<0.05).

본 연구는 유단백질 유래 카제인염을 상업용 단백질가수분해 효소로 처리하여 효소의 종류와 가수분해 시간에 따른 ACE 저해효과를 살펴보고 주요 성인병인 고혈압의 예방을 위한 혈압강하 효과가 높은 가수분해물을 제조하고자 수행하였다. 카제인염을 6종의 단백질 분해효소로 기질대 효소비 1000:1로 첨가하여 8시간 가수분해했을 때 가수분해도는 2.54-4.25%로 나타났고, 다시 가수분해물을 기질대 효소비 500:1로 처리하여 4시간 동안 2차 가수분해하였을 때 4.30-5.22%의 가수분해가 일어났다. 효소별 가수분해물의 ACE 저해효과는 가수분해가 진행됨에 따라 $IC_{50}$의 수치는 감소하였고 저해율을 증가하였다. 1차 가수 분해시 8시간 가수분해한 가수분해물의 $IC_{50}$ 수치는 Protamex 처리군이 $516{\mu}g/mL$로 가장 낮았고 Flavourzyme이 $866{\mu}g/mL$로 가장 높았다. 1차 가수분해물을 Flavourzyme로 4시간 2차 가수분해를 하였을 때 1차 가수분해물 보다 $IC_{50}$ 수치가 감소되어 ACE저해 효과가 증가하였으며 Neutrase로 처리하였을 때 $282{\mu}g/mL$로 가장 낮았고 Protease M이 $570{\mu}g/mL$로 가장 효과가 적었다. 가장 효과가 좋은 Neutrase 2차 가수분해물을 소화효소인 pepsin, trypsin, ${\alpha}$-chymotrypsin으로 가수분해 하였을 경우 $IC_{50}$ 수치는 $597{\mu}g/mL$로 1차 가수분해물보다 저해효과가 유의적으로 감소되었다(p<0.05). Neutrase 2차 가수분해물을 MW 10,000로 한외여과하였을 때 MW 10,000 미만 permeate의 $IC_{50}$ 수치는 $273{\mu}g/mL$로 저해효과는 유의차가 없었으나, 10,000 이상의 retentate는 $IC_{50}$ 수치가 $635{\mu}g/mL$로 유의적 수준에서 저해효과가 감소하였다(p<0.05). 이에 효소의 종류와 가수분해 시간의 조합에 의한 ACE 저해활성을 측정하고 분리공정을 최적화하기 위한 추가 연구를 수행한다면 주요 유단백질인 카제인 유래 기능성 식품의 산업적 대량생산이 가능할 것으로 사료된다.

Keywords

References

  1. Abubakar, A., Saito, T., Kitazawa, H., Kawai, Y., and Itoh, T. (1998) Structure analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J. Dairy Sci. 81, 3131-3138. https://doi.org/10.3168/jds.S0022-0302(98)75878-3
  2. Adler-Nissen, J. (1979) Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 27, 1256-1262. https://doi.org/10.1021/jf60226a042
  3. Ariyoshi, Y. (1993) Angiotensin-converting enzyme inhibitors derived from food proteins. Trends Food Sci. Technol. 4, 139-144. https://doi.org/10.1016/0924-2244(93)90033-7
  4. Cushman, D. W. and Cheung, H. S. (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20, 1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9
  5. Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., and He, J. (2005) Global burden of hypertension: Analysis of worldwide data. Lancet 365, 217-223. https://doi.org/10.1016/S0140-6736(05)17741-1
  6. Kim, D. W., In, Y. M., Jeong, S. G., Ham, H. S., Kim, H. S., Choe, H. S., Ahn, C. N., Kim, Y. K., and Youn, S. K. (2002) Angiotensin-1 converting enzyme inhibitory peptides derived from bovine milk protein J. Korean Dairy Technol. Sci. 20, 9-17.
  7. Lee, J. H., Oh, S. J., Lim, K. S., Shin, J. G., Huh, C. S., and Baek, Y. J., (2002) Chromatographic pattern and functionalities of partially hydrolyzed milk proteins by commercial proteases. J. Korean Dairy Technol. Sci. 20, 110-115.
  8. Maruyama, S. and Suzuki, H. (1982) A peptide inhibitor of angiotensin converting enzyme in the tryptic hydrolysate of casein. Agri. Biol. Chem. 46, 1393-1394. https://doi.org/10.1271/bbb1961.46.1393
  9. McSweeney, P. L. H., Olson, N. F., Fox, P. F., Healy, A., and Hojrup, P. (1993) Proteolytic specificity of bovine $\alpha s1$- casein. Food Biotechnol. 7, 143-158. https://doi.org/10.1080/08905439309549853
  10. Ministry of Health and Welfare (2008) KHANES IV 2nd year report. pp. 50.
  11. Oh, S. J., Kim, S. H., Kim, S. K., Baek, Y. J., and Cho, K. H., (1997) Angiotensini-converting enzyme inhibitory activity of the $\kappa$-casein fragments hydrolysated by chymosin, pepsin, and trypsin. Korean J. Food Sci. Technol. 29, 1316-1318.
  12. Seki, E., Osajima, K., Matsufuji, H., Matsui T., and Osajima, T. (1996) Resistance to gastrointestinal proteases of the short chain peptide having reductive effect in blood pressure. Nippon Shokuhin Kagaku Kogaku Kaishi. 43, 520-525. https://doi.org/10.3136/nskkk.43.520
  13. Shin, J. I. (1996) Characteristics and process optimization of anti-hypertensive peptides derived from soybean foods. Ph. D. thesis, Seoul Univ., Seoul, Korea.
  14. Vermeirssen, V., Van Camp, J., Devos, L., and Verstraete, W. (2003) Release of Angiotensin I Converting Enzyme (ACE) inhibitory activity during in vitro gastrointestinal digestion: from batch experiment to semi continuous model, J. Agric. Food. Chem. 51, 5680-5687. https://doi.org/10.1021/jf034097v
  15. Yamamoto, N., Akino, A., and Takano, T. (1994) Antihypertensive effects of peptide derived from casein by extra cellular protease from Lactobacillus helveticus CP790. J. Dairy Sci. 77, 917-922. https://doi.org/10.3168/jds.S0022-0302(94)77026-0
  16. Yoon, J. H., Yoon, J. O., and Hong, K. W., (2003) Research Notes Fractionation of Angiotensin Converting Enzyme (ACE) Inhibitory Peptides from Casein Hydrolysates by Proteases. Food Eng. Progress. 7, 116-120.
  17. Yun, J. S., Jeong, B. H., Kim, N. Y., Seong, N. S., Lee, H. Y., Lee, J. H., and Kim, J. D. (2003) Screening of 94 Plant Species Showing ACE Inhibitory Activity. Korean J. Medicinal Crop Sci. 11, 246-251.

Cited by

  1. Anti-oxidative and Neuroprotective Activities of Pig Skin Gelatin Hydrolysates vol.33, pp.2, 2013, https://doi.org/10.5851/kosfa.2013.33.2.258