DOI QR코드

DOI QR Code

A Parametric Study on Shear Buckling Stresses of Steel Pile

강관파일의 전단좌굴응력에 관한 매개변수 연구

  • 마호성 (호서대학교 토목공학과) ;
  • 조광일 (포항산업과학연구원 강구조연구소)
  • Received : 2012.07.18
  • Accepted : 2012.08.13
  • Published : 2012.10.31

Abstract

Parametric analysis has been throughly conducted to see the shear buckling stresses of steel piles made of STK400, STK490 and SM570 by using detailed FEM model via commercial code ABAQUS. The thickness of pipe is 2 mm, 40 mm and 75 mm, and radii and lengths are determined based on the values satisfying the following relationship as R/t=20~400, L/R=1~3. Nonlinear buckling behaviors are simulated by giving the initial imperfection with the value of 1/1000 in the longitudinal direction according to the first buckling mode obtained from the elastic buckling analysis. $P_{cr}$ is prepared to calculate the shear buckling stresses based on the beam theory, and $P_{cr}$ decreases as L/R increases. The shear buckling stresses is found to decreases as R/t and L/R increases for all steel types considered. The rate of decrease is rather high for the high strength steels. It should be noticed that the decrease rate is sensitive to the length of pile.

본 연구에서는 강관파일의 전단좌굴응력을 알아보기 위하여 ABAQUS를 사용한 상세 유한요소모델을 통하여 매개변수 해석을 실시하였다. 해석에 사용한 강종은 STK400, STK490, SM570이며, 강재의 제원은 두께의 경우 2 mm, 40 mm, 75 mm로 하였고, 반지름은 R/t=20~400, 길이는 L/R=1~3 의 범위 안에 포함이 되도록 정하였다. 좌굴 해석은 탄성좌굴해석으로부터 얻은 1차 좌굴모드를 이용하여 길이방향의 1/1000에 해당하는 수치를 초기변형으로 주어 비선형좌굴해석을 수행하였다. 보 이론에 해당하는 식을 이용하여 전단좌굴응력을 구하기 위해 전단좌굴하중($P_{cr}$)을 구하였고, $P_{cr}$은 L/R이 커질수록 작아지는 결과가 나타났다. 전단좌굴응력은 모든 강종에서 R/t과 L/R이 증가할수록 작아지는 경향이 나타났으며, 고강도 강재일수록 감소율이 커지는 것을 알 수 있었다. 특히 고강도 강재에서는 전단좌굴응력길이의 증가에 대해 민감한 것으로 밝혀졌다.

Keywords

References

  1. 대한토목학회, 도로교설계기준 (2008)
  2. 최현식 (1995) 강체변위에 의한 탑상형 원통쉘의 응력해석에 관한 연구, 대한건축학회 논문집, 대한건축공학회, 제11권, 제9호, pp. 175-182.
  3. ABAQUS User's Manual 6.4, Hibit, Karlson and Sorenson
  4. Athiannan, K. and Palaninathan, R. (2004) Buckling of cylindrical shells under transverse shear, Thin-Walled Structures, Vol. 42, pp. 1307-1328. https://doi.org/10.1016/j.tws.2004.03.019
  5. Batdorf, S.B., Stein, M., and Schildcrout, M. (1947) Critical shear stress of curved rectangular plates. NACA TN No.1342, National Advisory Committee for Aeronautics, Washington, D.C.
  6. Galletly, G.D. and Blachut, J., (1983) Buckling of a Cantilevered Cylindrical Shell Subjected to a Transverse Shearing Force at its Tip, The Third International Colloquium on Stability of Metal Structures, Paris, Nov. 16-17.
  7. Lee, R.-L., (1969) Buckling of Stiffened Cylindrical Shell with Transverse Shear Load, AIAA Journal, Vol. 7, NO. 4, pp. 1095- 1097.
  8. Lundquist, E.E. (1935) Strength Tests of Thin-Walled Duralumin Cylinders in Combined Transverse Shear and Bending, NACA Technical Note, No. 523.
  9. Lu, S.Y. (1965) Buckling of Cantilever Cylindrica1 Shell with a Transverse End Load, AIAA Journal, Vol. 3, No. 12, pp. 2305- 2351. https://doi.org/10.2514/3.3360
  10. Alinia, M.M. Gheitasi, A., and Erfani, S. (2009) Plastic shear buckling of unstiffened stocky plates, Journal of constructional Steel Research, Vol. 65, pp. 1631-1643. https://doi.org/10.1016/j.jcsr.2009.04.001
  11. Schroder, P. (1974) The Buckling Behaviour of Transverse Loaded Circular Cylinders, Technica1 Translation ESRO TT-105
  12. Stein, M. and Yeager, D.J. (1949) Critical shear stress of curved rectangu1ar pane1 with a central stiffener. NACA TN No.1972, National Advisory Committee for Aeronautics, Washington, D.C.
  13. Yamaki, N. (1984) Elastic Stability of Circular Cylindrical Shells, North-Holland, pp. 453-476.

Cited by

  1. Development of Seismic Fragility Functions of LNG Storage Tanks by an Analytical Method vol.13, pp.1, 2013, https://doi.org/10.9798/KOSHAM.2013.13.1.089
  2. Analysis of Shear Buckling Stresses for Steel Pipes by Detailed Parametric Study vol.25, pp.5, 2013, https://doi.org/10.7781/kjoss.2013.25.5.579