DOI QR코드

DOI QR Code

Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel

터널을 주행하는 열차의 풍압에 대한 특성해법 해석

  • Received : 2012.07.06
  • Accepted : 2012.08.22
  • Published : 2012.10.30

Abstract

Pressure waves are generated and propagate in tunnel when train enters a tunnel with high speed. Compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as expansion wave. While expansion wave due to the entry of train tail propagates along the tunnel and is reflected at tunnel exit as compression wave. These pressure waves are repeatedly propagated and reflected at tunnel entrance and exit. Severe pressure change per second causes ear-discomfort for passengers in cabin and micro pressure wave around tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnel qualitatively and quantitatively, because pressure change rate is considered as one of major design parameters for an optimal tunnel cross sectional area and the repeated fatigue force on car body. In this study, we developed the characteristics method analysis based on fixed mesh system and compared with the results of real train test. The results of simulation agreed with that of experiment.

열차가 터널에 고속으로 진입하면, 압력파가 발생한다. 열차 선두부의 진입에 의하여 발생한 압축파는 터널을 따라 진행되어 터널 출구에서 반사되어 팽창파로 되돌아오며, 후미부의 진입에 의하여 발생한 팽창파도 터널을 따라 전파되어 터널 출구에서 압축파로 반사되어 터널 입구로 되돌아 온다. 열차 선두부 및 후미부에 의하여 발생한 이러한 압력파는 터널 입구 및 출구에서 각각 반사되어 터널 내부를 왕복하며, 차량 객실에 탑승한 승객들에게는 이명감을 일으키고, 터널 출구에서는 환경소음의 일종인 미기압파를 발생시킨다. 터널에서의 큰 압력 변동은 터널의 최적 단면적 설계에도 주요 인자로 고려되고 있으며, 차체의 반복 피로 하중으로 작용하므로, 이에 대한 정량적 및 정성적 분석이 필요하다. 본 연구에서는 고정 격자계를 이용한 특성 해법을 개발하였으며, KTX를 이용한 실차 시험 결과와 비교하였으며, 해석 결과는 시험 결과와 잘 일치하였다.

Keywords

References

  1. P.K.H. Wu (2000) Prediction of Pressure wave generation by high-speed train entering tunnel using a commercial CFD code, BHR Group 2000 Vehicle Tunnels, 1, pp. 767-777.
  2. M. Suzuki (2000) Aerodynamic Force acting on Train in Tunnel, RTRI Report, 14(9), pp. 37-42(in Japanese).
  3. H.B. Kwon, T.Y. Kim, D.H. Lee, M.S. Kim. (2003) Numerical simulation of unsteady compressible flows induced by a highspeed train passing through a tunnel, Proc.Inst.Mech.Engrs. Part F:J Rail and Rapid Transit., 217, pp. 111-124. https://doi.org/10.1243/095440903765762850
  4. T. Hara. (1967) Aerodynamic Drag of a Train in a Tunnel, RTRI Report, 608, pp. 1-12(in Japanese).
  5. A. Yamamoto (1973) Pressure Variation, Aerodynamic Drag and Tunnel Ventilation in Shinkansen Type Tunnel, RTRI Report, 871, pp. 1-74(in Japanese).
  6. A. Yamamoto (1983) Aerodynamics of Train and Tunnel, RTRI Report, 1230, pp. 1-70(in Japanese).
  7. T. Maeda (1998) Aerodynamic Characteristics of Train and Countermeasures for Decreasing Micro-pressure Wave, RTRI Report, 20, pp. 196-229(in Japanese).
  8. A.E. Vardy, B. Dayman (1979) Alleviation of Tunnel Entry Pressure Transients : Theoretical Modelling and Experimental Correlation, 3rd Int. Symp.on the Aerodynamics and Ventilation of Vehicle Tunnels, pp. 363-375.
  9. H.-D. Kim (1997) Aerodynamic Analysis of a Train Running in a Tunnel(1)-Aerodynamics of One-Train, J. KSME(B), 21(8), pp. 963-972(in Korean).
  10. G. Rudinger (1955) Wave Diagrams for Nonsteady Flow in Ducts, D.Van Nostrand Co. Inc., New York.
  11. T. Maeda (2011) Private Communication.
  12. C.Y. Chow (1979) An Introduction to Computational Fluid Mechanics, John Wiley & Sons, Inc.

Cited by

  1. Prediction Method and Characteristics of Micro-pressure Wave on High-speed Railway Tunnel vol.18, pp.1, 2015, https://doi.org/10.7782/JKSR.2015.18.1.8
  2. Analysis for Characteristics Method on Wind Pressure of Trains Crossing in Tunnel vol.16, pp.6, 2013, https://doi.org/10.7782/JKSR.2013.16.6.454
  3. Study of the Air-tightness Requirement Decisions of GTX Trains vol.18, pp.6, 2015, https://doi.org/10.7782/JKSR.2015.18.6.513