DOI QR코드

DOI QR Code

Distribution Characteristics of Polycyclic Aromatic Hydrocarbons(PAHs) in Riverine Waters of Ulsan Coast, Korea

울산연안 하천에서 다환방향족탄화수소 분포특성

  • You, Young-Seok (Oil Pollution Research Center, National Park Research Institute) ;
  • Lee, Jeong-Hoon (Southeast Fisheries Research Institute, NFRDI) ;
  • Park, Jeong-Chae (The United Graduate School of Veterinary Science, Yamaguchi University) ;
  • Kim, Dong-Myung (Department of Ecological engineering, Pukyong National University) ;
  • Cho, Hyeon-Seo (Faculty of Marine Technology, Chonnam National University)
  • 유영석 (국립공원연구원 유류오염연구센터) ;
  • 이정훈 (국립수산과학원 남동해수산연구소) ;
  • 박정채 (일본 야마구치대학 연합수의학연구과) ;
  • 김동명 (부경대학교 생태공학과) ;
  • 조현서 (전남대학교 수산해양대학 해양기술학부)
  • Received : 2012.09.05
  • Accepted : 2012.10.26
  • Published : 2012.10.31

Abstract

PAHs(Polycyclic Aromatic Hydrocarbons) in coastal area and estuary adjacent to urban area and industrial activities region are mainly introduced into marine environment via atmosphere and river. This study which is evaluated the distribution characteristics of PAHs discharge from rivers and sewage disposal water which flowing into Ulsan bay, and were carried out in Jun of dry season and in Auguest of wet season, 2008. The water samples from eight main rivers and Youngyeon WWTP(Wastewater Treatment Plant) flowed into Ulsan bay were taken for analysis of dissolved PAHs. The range and mean values of dissolved PAHs concentrations showed 10.30 to 87.88 ng/L, its mean 36.94 ng/L in dry season and 10.30 to 69.57 ng/L, its mean 24.37 ng/L in wet season. The distribution of dissolved PAHs showd the high concentrations in the Gungcheoncheon which is flowed from urban and industrial area. The ranges and means values of the loading fluxes were estimated with 0.04 to 8.27 g/day, its mean 2.05 g/day in dry season, and 0.03 to 4.77 g/day, its mean 1.61 g/day, in wet season. The loading flux showed the highest value in Taewha river due to the high flow rate and the urban activity. The composition patterns of dissolved PAHs compound showed most of the trend occupying low molecuar weight PAHs than high molecular weight PAHs. These results were due to physical and chemical characteristics of PAHs compound, and were similar to those of other studies. The concentrations of dissolved PAHs in this study are lower than those of other studies, and the level of PAHs pollution appeared to be not serious in reverine waters of Ulsan coast.

PAHs(다환방향족탄화수소) 화합물은 연안역과 하구역에서 도시화와 산업활동 중 연소에 의하여 발생되어 주로 대기와 하천을 통하여 유입된다. 본 연구는 울산만으로 유입되는 하천과 하수처리장 배출수에서 PAHs 화합물의 분포특성을 평가하기 위해 2008년 갈수기인 6월과 풍수기인 8월에 수행되었다. 분석하기 위한 수시료는 울산만으로 유입되는 주요 8개 하천과 용연 하수처리장에서 채취하였다. 용존 PAHs 화합물의 농도범위와 평균값은 갈수기에 10.30~87.88(평균 39.39) ng/L, 풍수기에 10.30~69.57(평균 24.37) ng/L를 나타내었다. 용존 PAHs 화합물의 농도분포는 도심과 산업지역을 흐르는 궁천천에서 높은 값을 나타내었다. 용존 PAHs 화합물의 유입부하량 범위와 평균은 갈수기에 0.04~8.27(평균 2.05) g/day, 풍수기에는 0.03~4.77(평균 1.61) g/day로 산정되었다. 유입부하량은 많은 유량과 도시 활동의 영향을 크게 받는 태화강에서 가장 많은 양을 나타내었다. PAHs 화합물의 조성 형태는 고분자량 PAHs 화합물보다는 저분자량 PAHs 화합물이 대부분을 차지하는 경향을 보였다. 이러한 결과는 PAHs 화합물의 물리화학적 성질에 의한 것으로 다른 연구와 유사하게 나타났다. 본 연구에서 용존 PAHs 화합물의 농도는 다른 연구들의 결과보다 낮은 농도로 나타나 울산연안의 하천에서 PAHs 화합물의 오염정도가 심각하지 않은 것으로 나타났다.

Keywords

References

  1. 국토해양부(2008), 해역환경관리 기본계획 수립연구, p. 438.
  2. 김동명(2011), EMT-3D 모델을 이용한 울산만 Dioxins 거동에 관한 시나리오 분석, 해양환경안전학회, Vol. 17(2), pp. 89-96. https://doi.org/10.7837/kosomes.2011.17.2.089
  3. 유영석, 김동명, 조현서(2010), 진해만 해수와 해양퇴적물에서 다환방향족탄화수소의 오염특성, 한국생태공학회지, Vol. 1, No. 1, pp. 24-36.
  4. 유영석, 김좌관, 조현서(2009), 진해만 하천에서 다환방향족탄화수소 유입부하량과 오염특성, 해양환경안전학회, Vol. 15(4), pp. 275-282.
  5. 통계청(2008), 기상자료, www.kostat.go.kr.
  6. Daskalakis, K. D. and T. P. O'Connor(1995), Distribution of chemical concentrations in U.S. coastal and estuarine sediment, Marine Environmental Reserch, Vol. 40, pp. 381-398. https://doi.org/10.1016/0141-1136(94)00150-N
  7. Doong, R. A. and Y. T. Lin(2004), Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Res, Vol. 38, pp. 1733-1744. https://doi.org/10.1016/j.watres.2003.12.042
  8. Fernandes, M. B., M. A. Sicre, A. Boireau and J. Tronszynski(1997), Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary, Marine Pollution Bulletin, Vol. 34, pp. 857-867. https://doi.org/10.1016/S0025-326X(97)00063-5
  9. Guo, W., M. He, Z. Yang, C. Lin, X. Quan and H. Wang(2007), Distribution of Polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China. Chemosphere Vol. 68, pp. 93-104. https://doi.org/10.1016/j.chemosphere.2006.12.072
  10. Guzzella, L. and A. Depaolis(1994), Polycyclic Aromatic Hydrocarbons in sediments of the Adriatic sea, Marine Pollution Bulletin, Vol. 28, pp. 159-165. https://doi.org/10.1016/0025-326X(94)90392-1
  11. Hofftman, R. N.(1981), Inventory of Data on Environmental Carcinogens; PAHs and N-Heterocycles ; Report to the EC-JRC ; Delft, The Netherlands, TNO Cl, p. 81.
  12. Karcher, W.(1988), Spectral Atlas of Polycyclic Aromatic Compounds, The Netherlands, Vol. 2, pp. 20-24.
  13. Karickoff, S. W., D. S. Brown and T. A. Scott(1979), Sorption of hydrophobic pollutants on natural sediments. Water Research, Vol. 13, pp. 241-248. https://doi.org/10.1016/0043-1354(79)90201-X
  14. Koh, C.-H., G. B. Kim, K. A. Maruya, J. W. Anderson, J. M. Jones and S.-G. Kang(2001), Induction of the P450 reporter gene system bioassay by polycyclic aromatic hydrocarbons in Ulsan Bay(South Korea) sediments. Environmental Pollution, Vol. 111, pp. 437-445. https://doi.org/10.1016/S0269-7491(00)00087-7
  15. Law, R. J. and J. L. Biscaya(1994), Polycyclic aromatic hydrocarbons(PAH)-problems and progress in sampling, analysis and interpretation. Marine Pollution Bulletin, Vol. 29, pp. 235-241. https://doi.org/10.1016/0025-326X(94)90415-4
  16. Lee, S. J., H. B. Moon, M. Choi and J. H. Goo(2005), Estimation of PAHs Fluxes via Atmospheric Deposition and Riverine Discharge into the Masan Bay, Korea. J. Fish. Sci. Technol., Vol. 8, pp. 167-176. https://doi.org/10.5657/fas.2005.8.3.167
  17. Li, G., X. Xia, Z. Yang, R. Wang and N. Voulvoulis( 2006), Distribution and source of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environmental Pollution, Vol. 144, pp. 985-993. https://doi.org/10.1016/j.envpol.2006.01.047
  18. Lipiatou, L., I. Tolosa, R. Simó, I. Bouloubassi, J. S. Dachs, M. A. Sicre, J. M. Bayona, J. O. Grimault, A. Saliot and J. Albagiés(1997), Mass budget and dynamics of polycyclic aromatic hydrocarbons in the Mediterranean sea. Deep-Sea Res., Vol. 44, pp. 881-905. https://doi.org/10.1016/S0967-0645(96)00093-8
  19. Malins, D. C., B. B. McCain, D. W. Brown, U. Varanasi, M. M. Krahn, M. S. Myers, S. L. Chan, R. Thomas and R. Evans(1987), Sediment-associated contaminants and liver diseases in bottom-dwelling fish. Ecological Effects of In Situ Sediment Contaminants, Vol. 149, pp. 67-74.
  20. Maskaoui, K., J. L. Zhou, H. S. Hong and Z. L. Zhang(2002), Contamination by polycyclic aromatic hydrocarbons in the Jiulong river estuary and western Xiamen sea, China. Environmental Pollution, Vol. 118, pp. 109-122. https://doi.org/10.1016/S0269-7491(01)00208-1
  21. Mitra, S. and T. S. Bianchi(2003), A preliminary assessment of Polycyclic aromatic hydrocarbon distributions in the lower Mississippi River and Gulf of Mexico. Mar. Chem., Vol. 82, pp. 273-288. https://doi.org/10.1016/S0304-4203(03)00074-4
  22. Shaw, M., I. R. Tibbetts and M. F. Jochen(2004), Monitoring PAHs in the Brisbane River and Moreton Bay, Australia, using semipermeable membrane devices and EROD activity in yellowfin bream, Acanthopagrus australis. Chemosphere, Vol. 56, pp. 237-246. https://doi.org/10.1016/j.chemosphere.2004.03.003
  23. Tolosa, I., J. M. Bayona and J. Albaiges(1996), Aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in northwestern mediterranean sediments : Spatial and temporal variability, fluxes and budgets. Environ. Sci. Technol., Vol. 30, pp. 2495-2503. https://doi.org/10.1021/es950647x
  24. Yim, U. H., S. H. Hong and W. J. Shim(2007), Distribution and characteristics of PAHs in sediments from the marine environment of Korea. Chemosphere, Vol. 68, pp. 85-92. https://doi.org/10.1016/j.chemosphere.2006.12.032
  25. Zhang, Z. L., J. Huang, G. Yu and H. S. Hong(2004), Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environ. Pollut., Vol. 130, pp. 249-261. https://doi.org/10.1016/j.envpol.2003.12.002

Cited by

  1. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China 2017, https://doi.org/10.1007/s10653-017-9936-3
  2. Evaluation of Pollution Level for Organic Matter and Trace Metals in Sediments around Taehwa River Estuary, Ulsan vol.48, pp.4, 2015, https://doi.org/10.5657/KFAS.2015.0542
  3. Marine Bio-environmental Characteristics with the Distributions of Dinoflagellate Cyst Assemblages in the Ulsan Coastal Waters (UCW) vol.35, pp.3, 2017, https://doi.org/10.11626/KJEB.2017.35.3.361
  4. Spatio-temporal Distributions of Phytoplankton Community and It’s Variation Characteristics in the Ulsan Coastal Waters, Southern East Sea of Korea vol.22, pp.3, 2019, https://doi.org/10.7846/jkosmee.2019.22.3.159
  5. 지하수 중 다환방향족탄화수소류(PAHs, Polycyclic Aromatic Hydrocarbons)의 동시분석법 마련 및 수질실태조사 vol.25, pp.4, 2012, https://doi.org/10.7857/jsge.2020.25.4.067