DOI QR코드

DOI QR Code

Error analysis on the Offshore Wind Speed Estimation using HeMOSU-1 Data

HeMOSU-1호 관측 자료를 이용한 해상풍속 산정오차 분석

  • Ko, Dong Hui (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Jeong, Shin Taek (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Cho, Hongyeon (Marine Environments and Conservation Research Division, Korea Institute of Ocean Science and Technology) ;
  • Kim, Ji Young (KEPCO Research Institute) ;
  • Kang, Keum Seok (KEPCO Research Institute)
  • 고동휘 (원광대학교 토목환경공학과) ;
  • 정신택 (원광대학교 토목환경공학과) ;
  • 조홍연 (한국해양과학기술원, 해양환경.보전연구부) ;
  • 김지영 (한국전력공사 전력연구원) ;
  • 강금석 (한국전력공사 전력연구원)
  • Received : 2012.09.25
  • Accepted : 2012.10.17
  • Published : 2012.10.31

Abstract

In this paper, error analyses on the calculation of offshore wind speed have been conducted using HeMOSU-1 data to develop offshore wind energy in Yeonggwang sea of Korea and onshore observed wind data in Buan, Gochang and Yeonggwang for 2011. Offshore wind speed data at 98.69 m height above M.S.L is estimated using relational expression induced by linear regression analysis between onshore and offshore wind data. In addition, estimated offshore wind speed data is set at 87.65 m above M.S.L using power law wind profile model with power law exponent(0.115) and its results are compared with the observed data. As a result, the spatial adjustment error are 1.6~2.2 m/s and the altitude adjustment error is approximately 0.1 m/s. This study shows that the altitude adjustment error is about 5% of the spatial adjustment error. Thus, long term observed data are needed when offshore wind speed was estimated by onshore wind speed data. because the conversion of onshore wind data lead to large error.

본 연구에서는 해상풍력발전 후보지인 영광해상에 설치한 해상 기상타워 해모수 1호(HeMOSU-1)의 2011년 연간 풍속 관측 자료와 기상타워 해모수 1호 설치 지점에 인접한 부안, 고창, 영광 3개 지점의 육상 풍속자료를 이용하여 해상 임의고도에서의 풍속 산정 과정에서 발생하는 오차에 대한 분석을 수행하였다. 먼저 육상 풍속자료와 해상 풍속자료의 선형회귀분석으로 유도된 관계식을 이용하여 해상 기준고도(평균해수면 98.69 m)의 해상풍속자료를 추정하였다. 그리고, 추정된 해상풍속 자료는 관측자료를 통해 산출된 고도분포지수 값(${\simeq}0.115$)과 멱법칙 풍속프로파일을 이용하여 87.65 m 높이로 고도보정하여 관측치와 비교하였다. 연구 수행결과, 공간보정오차는 1.6~2.2 m/s 정도이며, 고도보정오차는 0.1 m/s 정도로 공간보정오차의 약 5% 정도에 불과한 것으로 파악되었다. 육상자료를 환산하여 해상임의지점의 풍속을 추정하는 경우, 큰 오차가 발생하기 때문에 장기간의 해상자료를 확보하거나 정확도가 높은 모델링 자료를 이용하여야 할 것으로 판단된다.

Keywords

References

  1. 기상청(2011). http://www.kma.go.kr
  2. 박우선, 이광수, 정신택, 강금석, 안희도 (2011). 해상풍력발전 기술매뉴얼. 한국해양연구원.
  3. 정태윤, 김현구 (2010). 언덕지형과 지표상태에 따른 대기경계 층 풍속분포 관측.분석. 한국풍공학회 학술대회발표집, 한국풍공학회, 216.
  4. 정태윤, 임희창, 김현구, 장문석 (2009). 월령 연안지역 대기경계층의 유동특성과 대기 안정성에 대한 고찰. 한국환경과학회지, 18(8), 857-865. https://doi.org/10.5322/JES.2009.18.8.857
  5. Barthelmie, J.P. and Palutikof, J.P. (1996). Coastal wind speed modelling for wind energy applications. Journal of Wind Engineering and Industrial Aerodynamics, 62, 213-215. https://doi.org/10.1016/S0167-6105(96)00079-7
  6. Barthelmie, J.P., Palutikof, J.P. and Davies, T.D. (1993). Estimation of sector roughness lengths and the effect on prediction of the vertical wind speed profile. Boundary-Layer Meteorology, 66, 21-34.
  7. Hsu, S.A. (1988). Coastal Meteorology. Academic Press, Inc.
  8. Hsu, S.A. (1982). Determination of the power-law wind profile exponent on a tropical coast. Journal of Applied Meteorology, 21, 1187-1190. https://doi.org/10.1175/1520-0450(1982)021<1187:DOTPLW>2.0.CO;2
  9. Hsu, S.A., Meindl E.A. and Gilhousen D.B. (1994). Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. Journal of Applied Meteorology, 33, 757. https://doi.org/10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2
  10. International Electrotechnical Commission (2009), IEC61400-3, IEC, 22.
  11. Kim, H. G. and Choi, J. O. (2002). Calculation of wind profile exponent in Pohang area. 한국풍공학회지, 6(1), 47-52.
  12. Mwanyika HH. and Kainkwa RM. (2006). Determination of the power law exponent for southern highlands of tanzania. Tanzania Journal of Science, 32, 104.
  13. Simiu. E. (2011). Design of Buildings for Wind, 2nd edition. John Wiley & Sons, Inc., 121-123.
  14. Simiu. E. and Scanlan. R.H. (1966). Wind Effects on Structures, 3rd edition. John Wiley & Sons, Inc., 39-46.
  15. Sozzi, R. and Favaron, M. (1997). Method for estimation of surface roughness and similarity function of wind speed vertical profile. Journal of Applied Meteorology, 37, 461-465.
  16. Wieringa, J., Davenport, A.G., Grimmond, C.S.B. and Oke, T.R. (2001). New revision of Davenport roughness classification. 3rd European & African Conf. Netherlands, 1-8.

Cited by

  1. Extreme Offshore Wind Estimation using Typhoon Simulation vol.26, pp.1, 2014, https://doi.org/10.9765/KSCOE.2014.26.1.16
  2. Characteristic Analysis on the Wind Data in the Pohang Coastal Zone vol.27, pp.3, 2015, https://doi.org/10.9765/KSCOE.2015.27.3.190
  3. Distribution Characteristics on the Parameters of Vertical Tidal Current Profile at Uldolmok, Jindo, Korea vol.29, pp.6, 2017, https://doi.org/10.9765/KSCOE.2017.29.6.279
  4. Wind Tunnel Tests for Evaluation of Sliding and Overturning Velocities on Shipping Containers vol.29, pp.5, 2017, https://doi.org/10.9765/KSCOE.2017.29.5.260
  5. Assessment of Offshore Wind Power Potential for Turbine Installation in Coastal Areas of Korea vol.30, pp.4, 2018, https://doi.org/10.9765/KSCOE.2018.30.4.191