DOI QR코드

DOI QR Code

Recovery of Silicon from Silicon Sludge by Electrolysis

실리콘 슬러지로부터 실리콘의 전해회수(電解回收)

  • Park, Jesik (School of Advanced Materials & System Eng., Kumoh National Institute of Technology) ;
  • Jang, Hee Dong (Nano-Materials Group, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee, Churl Kyoung (School of Advanced Materials & System Eng., Kumoh National Institute of Technology)
  • 박제식 (금오공과대학교 신소재시스템공학부) ;
  • 장희동 (한국지질자원연구원 나노물질연구팀) ;
  • 이철경 (금오공과대학교 신소재시스템공학부)
  • Received : 2012.06.07
  • Accepted : 2012.08.06
  • Published : 2012.10.30

Abstract

As a recovery of elemental silicon from the sludge of Si wafer process, a process of mechanical separation-chlorine roasting-electrolysis has been suggested. The silicon sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by mechanical separation. The Si-SiC mixture was converted to silicon chloride by chlorine roasting at $1000^{\circ}C$ for 1 hr and the silicon chloride was dissolved into an ionic liquid of $[Bmpy]Tf_2N$ as an electrolyte. Cyclic voltammetry results showed an wide voltage window of pure $[Bmpy]Tf_2N$ and a reduction peak of elemental Si from $[Bmpy]Tf_2N$ dissolved $SiCl_4$ on Au electrode, respectively. The silicon deposits could be prepared on the Au electrode by the potentiostatic electrolysis of -1.9 V vs. Pt-QRE. The elemental silicon uniformly electrodeposited was confirmed by various analytical techniques including XRD, FE-SEM with EDS, and XPS. Any impurity was not detected except trace oxygen contaminated during handling for analysis.

실리콘 웨이퍼공정에서 발생하는 실리콘 슬러지로부터 실리콘 및 탄화규소를 분리한 다음, 전해법으로 원소형태의 실리콘을 회수하는 연구를 수행하였다. 실리콘 슬러지의 주요 불순물은 절삭유, 금속불순물, 실리콘 및 실리콘 카바이드를 들 수 있다. 기계적 선별법으로 분리한 실리콘, 탄화실리콘 복합물을 $1000^{\circ}C$에 1시간동안 염화 배소하여 응축하고 회수한 사염화실리콘을 이온성액체인 $[Bmpy]Tf_2N$에 용해하여 전해액으로 사용하였다. 순환전위법으로부터 $[Bmpy]Tf_2N$의 안정한 전압구간과 사염화실리콘을 용해한 $[Bmpy]Tf_2N$ 전해액에서 실리콘의 환원으로 추정되는 환원피크를 얻을 수 있었다. 정전위법(-1.9 V vs. Pt-QRE)에서 1시간동안 금 전극 상에 전해한 다음, 전극표면을 XRD, SEM-EDS 및 XPS 분석을 통하여 실리콘이 원소형태로 전착되었음을 확인하였으며, 미량의 산소가 검출되는 것은 분석과정에서 시편이 공기 중에 노출되었기 때문으로 판단된다.

Keywords

References

  1. H. D. Jang, H. K. Jnag, K. Cho, D. S. Gil, 2007: Synthesis of TMOS and Silica Nano Powders from Silicon Sludge Waste, J. of Korean Inst. of Resources Recycling, 16, pp. 41-45.
  2. K. Park and S. E. Park, 2008: Apparatus and Recycling Method of Silicon Sludge Waste, Korea Patent, 10- 0837346.
  3. G. Jeong, H. D. Jang, C. K Lee, 2010: Synthesis of Si-SiCCuO- C Composite from Silicon Sludge as an Anode of Lithium Battery, J. of Korean Inst. of Resources Recycling, 19(4), pp. 51-57.
  4. H. Y. Kim, 2008: Preparation of Polysilicon for Solar Cells, Korean Chem. Eng. Res., 46(1), pp. 37-49.
  5. H. St. Claire, C.R. DeVille, and Hebd, Seances Acad., 1854: Science, 39, pp. 1854.
  6. M. Dodero, C.R. Hebd, and Seances Acad., 1934: Science, 199, pp. 566.
  7. D. Elwell and R.S. Feigelson, 1982: Electrodeposition of solar silicon, Sol. Energy Materials, 6, pp. 123-145. https://doi.org/10.1016/0165-1633(82)90014-4
  8. U. Cohen and R. A. Huggins, 1976: Silicon Epitaxial Growth by Electrodeposition from Molten Fluorides, J. Electrochem. Soc., 123, pp. 381-383. https://doi.org/10.1149/1.2132829
  9. D. Elwell and G. M. Rao, 1988: Electrolytic production of silicon, J. Appl. Electrochem., 18, pp. 15-22. https://doi.org/10.1007/BF01016199
  10. A. K. Agrawal and A. E. Austin, 1981: Electrodeposition of silicon from solutions of silicon halides in aprotic solvents, J. Electrochem. Soc., 128, pp. 2292-296. https://doi.org/10.1149/1.2127237
  11. K. L. Carleton, J. M. Olson, and A. Kibbler, 1983: Electrochemical nucleation and growth of silicon in molten fluorides, J. Electrochem. Soc., 130, pp. 782-786. https://doi.org/10.1149/1.2119803
  12. R. Boen and J. Bouteillon, 1983: The electrodeposition of silicon in fluoride melts, J. Appl. Electrochem, 13, pp. 277-288. https://doi.org/10.1007/BF00941599
  13. R. C. De Mattei, D. Elwell, and R. S. Feigelson, 1981: Electrodeposition of silicon at temperatures above its melting point, J. Electrochem. Soc., 128, pp. 1712-1714. https://doi.org/10.1149/1.2127716
  14. J. Gobet and H. Tannenberger, 1986: Electrodeposition of silicon from a nonaqueous solvent, J. Electrochem. Soc., 133, pp. C322.
  15. J. Gobet and H. Tannenberger, 1988: Electrodeposition of silicon from a nonaqueous solvent, J. Electrochem. Soc., 135, pp. 109-112. https://doi.org/10.1149/1.2095532
  16. J. P. Nicholson, 2005: Electrodeposition of silicon from nonaqueous solvents, J. Electrochem. Soc., 152, pp. C795- 802. https://doi.org/10.1149/1.2083227
  17. F. Endres, 2002: Ionic Liquids: Solvents for the electrodeposition of metals and Semiconductors, Phys. Chem. Chem. Phys., 3, pp. 144-154. https://doi.org/10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#
  18. A. P. Abbott and K.J. McKenzie, 2006: Application of ionic liquids to the electrodeposition of metals, Phys. Chem. Chem. Phys., 8, pp. 4265-4279. https://doi.org/10.1039/b607329h
  19. H. Ohno, 2005: Electrochemical Aspects of Ionic Liquids, John Wiley & Sons, Hoboken, New Jersey, USA, pp. 100.
  20. T. Tsuda, C.L. Hussey, G.R. Stafford, and J.E. Bonevich, 2003: Electrochemistry of titanium and the electrodeposition of Al-Ti Alloys in the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride melt, J. Electrochem. Soc., 150, pp. C234-243. https://doi.org/10.1149/1.1554915
  21. J. K. Chang, S. Y. Chen, W. T. Tsai, M. J. Deng, and I. W. Sun, 2007: Electrodeposition of aluminum on magnesium alloy in aluminum chloride($AlCl_{3}$) 1-ethyl-3- methylimidazolium chloride(EMIC) ionic liquid and its corrosion behavior, Electrochem. Commun., 9, pp. 1602- 1606. https://doi.org/10.1016/j.elecom.2007.03.009
  22. A. E. Austin, 1976: US Pat. 3,990,953 and Nov. 9 (1976) CA 86: 10098c.
  23. E. R. Bucker and J. A. Amick, 1980: US Pat. 4,192,720. Oct. 16 (1980) CA 92: 10098.
  24. Y. Nishimura and Y. Fukunaka, 2007: Electrochemical reduction of silicon chloride in a non-aqueous solvent, Electrochimca Acta, 53, pp. 111-116. https://doi.org/10.1016/j.electacta.2007.06.026
  25. T. Munisamy and A. J. Bard, 2010: Electrodeposition of Si from organic solvents and studies related to initial stages of Si growth, Electrochimca Acta, 55(11, 15), pp. 3797-3803. https://doi.org/10.1016/j.electacta.2010.01.097
  26. S. Z. El Abedin, N. Borissenko, and F. Endres, 2004: Electrodeposition of nanoscale silicon in a room temperature ionic liquid, Electrochem. Comm., 6, pp. 510- 514. https://doi.org/10.1016/j.elecom.2004.03.013
  27. J. Mallet, M. Molinari, F. Martineau, F. Delavoie, P. Fricoteaux, and M. Troyon, 2008: Growth of silicon nanowires of controlled diameters by electrodeposition in ionic liquid at room temperature, Nano Lett. 8(10), pp. 3468-3474. https://doi.org/10.1021/nl802352e

Cited by

  1. Recovery of Metallic Lithium by Room-Temperature Electrolysis: I. Effect of Electrode Materials vol.21, pp.6, 2012, https://doi.org/10.7844/kirr.2012.21.6.45
  2. Leaching of Copper and Other Metal Impurities from a Si-Sludge Using Waste Copper Nitrate Solution vol.25, pp.3, 2016, https://doi.org/10.7844/kirr.2016.25.3.11
  3. Recycling of Cutting Oil from Silicon Waste Sludge of Solar Wafer vol.22, pp.4, 2016, https://doi.org/10.7464/ksct.2016.22.4.274