DOI QR코드

DOI QR Code

Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics

탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석

  • Park, Kwang-Phil (Central R&D Institute, Daewoo Shipbuilding & Marine Engineering, Co., Ltd.) ;
  • Cha, Ju-Hwan (Dept. of Ocean Engineering, Mokpo Nat'l Univ.) ;
  • Ku, Namkug (Dept. of Naval Architecture and Ocean Engineering, Seoul Nat'l Univ.) ;
  • Jo, A-Ra (Central R&D Institute, Daewoo Shipbuilding & Marine Engineering, Co., Ltd.) ;
  • Lee, Kyu-Yeul (Dept. of Naval Architecture and Ocean Engineering, Seoul Nat'l Univ.)
  • 박광필 ((주)대우조선해양 중앙연구소) ;
  • 차주환 (목포대학교 해양시스템공학과) ;
  • 구남국 (서울대학교 조선해양공학과) ;
  • 조아라 ((주)대우조선해양 중앙연구소) ;
  • 이규열 (서울대학교 조선해양공학과)
  • Received : 2010.12.13
  • Accepted : 2012.09.24
  • Published : 2012.12.01

Abstract

In this study, we perform the structural analysis of a floating offshore wind turbine tower by considering the dynamic response of the floating platform. A multibody system consisting of three blades, a hub, a nacelle, the platform, and the tower is used to model the floating wind turbine. The blades and the tower are modeled as flexible bodies using three-dimensional beam elements. The aerodynamic force on the blades is calculated by the Blade Element Momentum (BEM) theory with hub rotation. The hydrostatic, hydrodynamic, and mooring forces are considered for the platform. The structural dynamic responses of the tower are simulated by numerically solving the equations of motion. From the simulation results, the time history of the internal forces at the nodes, such as the bending moment and stress, are obtained. In conclusion, the internal forces are compared with those obtained from static analysis to assess the effects of wave loads on the structural stability of the tower.

본 논문에서는 부유식 플랫폼의 동적 거동을 고려하여 해상 풍력 발전기 타워의 구조 해석을 수행하였다. 풍력 발전기는 플랫폼, 타워, 낫셀, 허브 그리고 3 개의 블레이드로 구성된다. 타워는 3 차원 빔 요소를 사용하여 탄성체로 모델링하여 탄성 다물체계 동역학을 기반으로 한 운동 방정식을 구성하였다. 회전하는 블레이드에는 블레이드 요소 운동량 이론에 따라 계산된 공기역학적 힘이 적용되었고, 부유식 플랫폼에는 유체정역학적 힘, 유체동역학적 힘 그리고 계류력이 적용되었다. 타워의 구조 동역학적 거동을 수치적으로 시뮬레이션하였다. 시뮬레이션 결과를 이용하여 굽힘 모멘트와 응력을 산출하고 허용치와 비교하였다.

Keywords

References

  1. Nielsen, F. G., Hanson, T. D. and Skaare, B., 2006, "Integrated Dynamic Analysis of Floating Offshore Wind Turbines," Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering, OMAE2006-92291.
  2. Lee, K. S., Park, J. B., Won, J. B. and Kim, M. E., 2010, "Shock Analysis of an Offshore Wind Turbine of 3MW rating with Blade Equivalent Beam Model," Proceeding of the SNAK(Society of Naval Architecture of Korea) Spring Conference, pp.1688-1694.
  3. Lee, B. M., Jeong, W. I., Ye, S. H., Ahn, S. H. and Bae, D. M., 2010, "Comparison of Static Analysis and Dynamic Structural Analysis of Wind Turbine Power Plant Induced by Tubular Wind Load Random," Proceeding of the SNAK(Society of Naval Architecture of Korea) Spring Conference, pp.1709-1718.
  4. Hong, H. S., Park, J. I., Bang, J. H., Ryu, J. Y. and Kim, D. H., 2006, Proceeding of the KSNRE(Korean Society for New and Renewable Energy) Fall Conference, pp.301-304.
  5. Joshua, D. P., 2009, "Structural Analysis and Design of Floating Wind Turbine Systems," Ph.D thesis, MIT.
  6. Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E., 2001,Wind Energy Handbook, John Wiley & Sons.
  7. Hansen, M. O. L., 2009, Aerodynamics of Wind Turbine, Second Edition, Earthscan.
  8. Lee, K. Y., Cha, J. H. and Park, K. P., 2010, "Dynamic Response of a Floating Crane in Waves by Considering the Nonlinear Effect of Hydrostatic Force," Ship Technology Research, Schiffstechnik, Vol.57, No.1, pp.62-71.
  9. Cha, J. H., Park, K. P. and Lee, K. Y., 2010, "Numerical Analysis for Nonlinear Static and Dynamic Response of a Floating Crane with Elastic Booms," Trans. of the KSME(A), Vol. 34, No. 4, pp. 501-509.
  10. Nakos, D. E., Kring, D. C., and Sclavounos, P. D., 1993, "Rankine Panel Methods for Transient Free Surface Flows," 6th International Conference on Numerical Ship Hydrodynamics.
  11. Park, K. P., Cha, J. H. and Lee, K. Y., 2010, "Dynamic Response Analysis of the Elastic Tower of a Wind Turbine on a Barge Type Platform," Proceeding of the SNAK(Society of Naval Architecture of Korea) Fall Conference.
  12. Przemineiecki, J. S., 1968, Theory of Matrix Structural Analysis, Mc-Graw Hill.
  13. Jonkman, J. and Butterfield, S., 2009, "Definition of a 5-MW Reference Wind Turbine for Offshore System Development," NREL TP-500-38060.
  14. FAST Change Log (v7.00.01a-bjj, 235 KB, 02- November-2010), http://wind.nrel.gov/designcodes/simulators/fast/

Cited by

  1. Dynamic Response Analysis for Upper Structure of 5MW Offshore Wind Turbine System based on Multi-Body Dynamics Simulation vol.16, pp.4, 2013, https://doi.org/10.7846/JKOSMEE.2013.16.4.239
  2. Development of RecurDyn Module for Wind Turbine Analysis Applying BEM Theory vol.38, pp.2, 2014, https://doi.org/10.3795/KSME-A.2014.38.2.115