DOI QR코드

DOI QR Code

Development of Optimal Control of Heliostat System Using Configuration Factor and Solar Tracking Device

형상계수와 태양추적장치를 이용한 헬리오스타트 제어 시스템 개발

  • 이동일 (한국과학기술원 항공우주공학과) ;
  • 전우진 (한국과학기술원 항공우주공학과) ;
  • 백승욱 (한국과학기술원 항공우주공학과)
  • Received : 2012.06.04
  • Accepted : 2012.08.31
  • Published : 2012.12.01

Abstract

This study aims to develop a system that maximizes the radiative heat transfer from the heliostat to the receiver by using the configuration factor and a solar tracking device. As the heat transfer from the heliostat to the receiver is delivered by solar radiation, the configuration factor commonly utilized for radiation is applied to control the heliostat. Tracking the sun and calculating its position are possible by using an illuminance sensor (CdS) and Simulink. By applying optimized algorithms programmed using Simulink that maximize the configuration factors among the heliostat, receiver, and sun in real time, the solar absorption efficiency of the receiver can be maximized. Simulations were performed on how to change the angle required to control the elevation and azimuthal angle of the heliostat during the daytime with respect to various distances.

본 연구의 목적은 형상계수와 태양추적장치를 이용하여 헬리오스타트에서 흡수기로 복사열전달이 최대화 될 수 있는 시스템을 개발하는 것이다. 헬리오스타트에서 타워 상단에 위치한 흡수기로의 열전달은 대부분 복사에 의해 일어나기 때문에, 복사 열전달에서 사용되는 형상계수를 헬리오스타트 제어에 이용하였다. 태양 추적 및 태양 위치 계산은 CdS 센서와 시뮬링크 프로그램을 이용하였다. 시뮬링크 프로그램을 이용하여 실시간으로 헬리오스타트, 흡수기, 태양 사이의 형상계수가 최대화되는 알고리즘을 적용함으로서, 헬리오스타트에서 흡수기로의 복사 열전달이 최대화 될 수 있도록 하였다. 또한 다양한 조건에 따른 헬리오스타트 제어에 필요한 각을 시뮬레이션 함으로서 각 조건에 필요한 각을 도출할 수 있었다.

Keywords

References

  1. Schwer, R. K. and Riddel, M., 2004, "The Potential Economic Impact of Constructing and Operating Solar Power Generation Facilities in Nevada," Subcontractor Report-550-35037.
  2. Vant-Hull, L. L. and Hildebrandt, A. F., 1976, "Solar Thermal Power System Based on Optical Transmission," Solar Energy, Vol. 18, pp. 31-39. https://doi.org/10.1016/0038-092X(76)90033-5
  3. Edwards, B. P., 1978, "Computer Based Sun Following System," Solar Energy, Vol. 21, pp. 491-496. https://doi.org/10.1016/0038-092X(78)90073-7
  4. Lynch, W. A. and Salameh, Z. M., 1990, "Simple Electro-Optically Controlled Dual-Axis Sun Tracker," Solar Energy, Vol. 45, No. 2, pp. 65-69. https://doi.org/10.1016/0038-092X(90)90029-C
  5. Kalogirou, S. A., 1996, "Design and Construction of a One-Axis Sun-Tracking System," Solar Energy, Vol. 57, No. 6, pp. 465-469. https://doi.org/10.1016/S0038-092X(96)00135-1
  6. Roth, P., Georgiev, A. and Boudinov, H., 2004, "Design and Construction of a System for Sun- Tracking," Renewable Energy, Vol. 29, pp. 393-402. https://doi.org/10.1016/S0960-1481(03)00196-4
  7. Comsit, M. and Visa, I., 2007, "Design of the Linkages Type Tracking Mechanisms of the Solar Energy Conversion Systems by Using Multi Body Systems Method," 12th International Federation for the Promotion of Mechanism and Machine Science World Congress.
  8. Arbab, H., Jazi, B. and Rezagholizadeh, M., 2009, "A Computer Tracking System of Solar Dish with Two- Axis Degree Freedoms Based on Picture Processing of Bar Shadow," Renewable Energy, Vol. 34, pp. 1114-1118. https://doi.org/10.1016/j.renene.2008.06.017
  9. Park, Y. C., 2009, "Heliostat Control System," Journal of the Korean Solar Energy Society, Vol. 29, No. 1, pp. 50-57.

Cited by

  1. Development of Heating Device Using Concentrator Solar Cells vol.38, pp.1, 2014, https://doi.org/10.3795/KSME-B.2014.38.1.049
  2. Development of Hybrid Device for Photovoltaic Power Generation and Heating vol.38, pp.11, 2014, https://doi.org/10.3795/KSME-B.2014.38.11.907