DOI QR코드

DOI QR Code

Effect of Alloying Composition and Plastic Deformation on the Microstructure of 22Cr Micro-Duplex Stainless Steel

합금원소와 소성변형이 22Cr 마이크로 듀플렉스 스테인리스강의 미세조직에 미치는 영향

  • Park, Jun-Young (Department of Materials Science and Engineering, Pukyong National University) ;
  • Ahn, Yong-Sik (Department of Materials Science and Engineering, Pukyong National University)
  • 박준영 (부경대학교 재료공학과) ;
  • 안용식 (부경대학교 재료공학과)
  • Received : 2012.04.23
  • Published : 2012.11.25

Abstract

The effect of cold rolling on the microstructural evolution in 22Cr-0.2N micro-duplex stainless steel was investigated. The 22Cr-xNi-yMn-0.2N duplex stainless steel plates with various Ni and Mn contents were fabricated. The steels were vacuum induction melted and hot rolled, followed by annealing treatment at the temperature range of $1000-1100^{\circ}C$, in which both the austenite and ferrite phases were stable. The volume fraction of the ferrite phase depending on the alloy compositions of Ni and Mn increased with an increase in the annealing temperature. Grain growth in the ferrite phase occurred markedly after cold rolling followed by annealing, while fine recrystallised grains were still found in the austenite phase. A large number of martensite laths was found in the microstructure of cold rolled steels, which should be formed by strain-induced martensite from the austenite phase. The intersections of stacking faults were revealed by TEM observation. The volume fraction of the martensite phase increased with an increase of the reduction ratio by cold rolling.

Keywords

Acknowledgement

Supported by : 부경대학교

References

  1. V. F. Zackay, E. R. Parker, D. Fahr, and R. Busch, Trans. ASM 60, 252 (1967).
  2. Richard. A. Kot and V. Weiss, Metall. Trans. 1, 2685 (1970).
  3. M. Fujisawa, Y. Kato, and T. Ujiro, CAMP-ISIJ 21, 602 (2008).
  4. M. Fujisawa, Y. Kato, and T. Ujiro, CAMP-ISIJ 22, 1163 (2009).
  5. J. Y. Choi, J. H. Ji, S. W. Hwang, and K. T. Park, Mater. Sci. Eng. A 528, 6012 (2011).
  6. A. L. Schaeffler, Prog. Mater. Sci 56, 680 (1949).
  7. J. Keichel, J. Foct, and G. Gottstein, ISIJ Int, 43, 1788 (2003).
  8. D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh and S. J. Kim, Metall. Mater. Trans. A 41, 397 (2010.)
  9. J. S. You, H. Hong, O. Y. Lee, K. G. Jin, and S. J. Kim, J. Kor. Inst. Met. & Mater. 42, 117 (2004).
  10. T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, S. Koike, and M. Ichihara, Pro. ICOMAT 76, 339 (1976).
  11. K. T. Park, G. S. Kim, S.W. Lee, S. W. Hwang, and C.S. Lee, Met. Mater. Int. 16, 1 (2010).
  12. S. Zaefferer, J. Ohlert, and W. Bleck, Acta Mater, 52, 2765 (2004).
  13. C. F. Jatczak, J. A. Larson, and S. W. Shin, Society of Automotive Engineers, Inc. Warrendale, PA1980.
  14. F. J. Humphreys, P. S. Bate, and P. J. Hurley, J. Microsc. 201, 50 (2001).
  15. W. Reick, M. Polhl, and A. F. Padilha, Steel Res. Inst. 67, 253 (1996).
  16. F. B. Pickering, in G. L. Dunlop(Ed.), Proc. Stainles s steels 84, 12, The Inst. of Metals, p.2010 London (2007).
  17. R. E. Schramm and R. P. Reed, Met & Mater. Trans. A 6, 1345 (1975).