DOI QR코드

DOI QR Code

Fabrication of Nanostructured Ti from Ti and TiH2 by Rapid Sintering and Its Mechanical Properties

급속소결에 의한 Ti와 TiH2로부터 나노구조의 Ti 제조 및 기계적 특성

  • Kim, Na-Ri (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University) ;
  • Cho, Sung-Wook (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Kim, Won-Baek (Minerals and Materials Processing Division, Korea Institute of Geoscience, Mining and Materials Resources) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced Materials Development, Chonbuk National University)
  • 김나리 (전북대학교 신소재공학부 신소재개발 연구센터) ;
  • 조성욱 (한국지질자원연구원) ;
  • 김원백 (한국지질자원연구원) ;
  • 손인진 (전북대학교 신소재공학부 신소재개발 연구센터)
  • Received : 2011.06.01
  • Published : 2012.01.25

Abstract

Titanium has good deformability, high hardness, high biocompatibility, excellent corrosion resistance and low density. Due to these attractive properties, it has been used in many industrial applications. Dense nanostructured Ti was sintered from mechanically activated Ti and $TiH_2$ powders by high frequency induction heating under pressure of 80 MPa. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. $TiH_2$ powder was decomposed to Ti during sintering. The hardness of Ti increased and the average grain size of Ti decreased with increasing milling time. The average grain sizes of Ti samples sintered from Ti and $TiH_2$ powder milled for 5 hrs were about 26 nm, 44 nm, respectively. The hardness of Ti sintered from Ti and $TiH_2$ powder milled for 5 h was $504kg/mm^2$ and $567kg/mm^2$, respectively.

Keywords

Acknowledgement

Grant : 티타늄/티타늄계 합금 스크랩의 순도제어 및 활용기술 개발

Supported by : 한국지질자원연구원

References

  1. Wang. R. R. and Frnton A., Quintessence International 27, 401 (1996).
  2. McCracken M., J. Prosthetic Dentistry 18, 40 (1999).
  3. X.Y. Liu, P. K. Chu, and C. X. Ding, Mater. Sci. Eng. R. 47, 49 (2004).
  4. El-Eskandarany M. S., J. Alloys & Compounds. 305, 225 (2000).
  5. Fu L., Cao L. H., and Fan Y. S., Scr. Mater. 44, 1061 (2001).
  6. Niihara K., Elsevier Scientific Publishing Co. Trieste, Italy (1990).
  7. Berger S., Porat R., and Rosen R., Prog. Mater. Sci. 42, 311 (1997).
  8. Fang Z. and Eason J. W., Inter. J. of Refractory Met. & Hard Mater. 13, 299 (1995).
  9. A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Mater. Sci. and Eng. A 383, 229 (2004).
  10. I. J. Shon, D. K. Kim, K. T. Lee, and K. S. Nam, Met. Mater. Int. 14, 593 (2008).
  11. Sommer M., Schubert W. D., Zobetz E., and Warbichler P., Inter. J. Refractory Met. & Hard Mater 20, 41 (2002).
  12. I. Y. Ko, J. H. Park, J. K. Yoon, J. M. Doh, and I. J. Shon, Met. Mater. Int. 16, 219 (2010).
  13. I. Y. Ko, S. M. Chae, and I. J. Shon, Kor. J. Met. Mater. 48, 417 (2010).
  14. C. Suryanarayana, and M. Grant Norton, X-ray Diffraction A Practical Approach, p. 213, Plenum Press, New york (1998).
  15. Y. W. Gu, M. S. Yong, B. Y. Tay, and C. S. Lim, Mater. Sci. and Eng. C 29, 1515 (2009).
  16. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).
  17. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004).
  18. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004).
  19. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).