DOI QR코드

DOI QR Code

Dependence of Light-Emitting Characteristics of Blue Phosphorescent Organic Light-Emitting Diodes on Electron Injection and Transport Materials

  • Lee, Jeong-Ik (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Lee, Jonghee (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Lee, Joo-Won (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Cho, Doo-Hee (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Shin, Jin-Wook (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Han, Jun-Han (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Chu, Hye Yong (Convergence Components & Materials Research Laboratory, ETRI)
  • Received : 2012.01.17
  • Accepted : 2012.05.16
  • Published : 2012.10.31

Abstract

We investigate the light-emitting performances of blue phosphorescent organic light-emitting diodes (PHOLEDs) with three different electron injection and transport materials, that is, bathocuproine(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) (Bphen), 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (Tm3PyPB), and 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy), which are partially doped with cesium metal. We find that the device characteristics are very dependent on the nature of the introduced electron injection layer (EIL) and electron transporting layer (ETL). When the appropriate EIL and ETL are combined, the peak external quantum efficiency and peak power efficiency improve up to 20.7% and 45.6 lm/W, respectively. Moreover, this blue PHOLED even maintains high external quantum efficiency of 19.6% and 16.9% at a luminance of $1,000cd/m^2$ and $10,000cd/m^2$, respectively.

Keywords

References

  1. L. Xiao et al., "Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices," Adv. Mater., vol. 23, 2011, pp. 926-952. https://doi.org/10.1002/adma.201003128
  2. K.T. Kamtekar, A.P. Monkman, and M.R. Bryce, "Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs)," Adv. Mater., vol. 22, 2010, pp. 572-582. https://doi.org/10.1002/adma.200902148
  3. S. Reineke et al., "White Organic Light-Emitting Diodes with Fluorescent Tube Efficiency," Nature, vol. 459, 2009, pp. 234-238. https://doi.org/10.1038/nature08003
  4. J.Y. Lee, J.H. Kwon, and H.K. Chung, "High Efficiency and Low Power Consumption in Active Matrix Organic Light Emitting Diodes," Org. Electron., vol. 4, 2003, pp. 143-148. https://doi.org/10.1016/j.orgel.2003.08.013
  5. J. Lee et al., "Interlayer Engineering with Different Host Material Properties in Blue Phosphorescent Organic Light-Emitting Diodes," ETRI J., vol. 33, 2011, pp. 32-38. https://doi.org/10.4218/etrij.11.0110.0172
  6. C. Adachi et al., "Nearly 100% Internal Phosphorescence Efficiency in an Organic Light-Emitting Device," J. Appl. Phys., vol. 90, 2001, pp. 5048-5051. https://doi.org/10.1063/1.1409582
  7. D. Tanaka et al., "Ultra High Efficiency Green Organic Light-Emitting Devices," Jpn. J. Appl. Phys., vol. 46, 2007, pp. L10-L12. https://doi.org/10.1143/JJAP.46.L10
  8. S.J. Su et al., "Highly Efficient Organic Blue- and White-Light-Emitting Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off," Adv. Mater., vol. 20, 2008, pp. 4189-4194.
  9. J. Lee, J.I. Lee, and H.Y. Chu, "Investigation of Double Emissive Layer Structures on Phosphorescent Blue Organic Light-Emitting Diodes," Synth. Met., vol. 159, 2009, pp. 1460-1463. https://doi.org/10.1016/j.synthmet.2009.03.026
  10. J. Lee et al., "Influence of Doping Profile on the Efficiency of Blue Phosphorescent Organic Light-Emitting Diodes," Appl. Phys. Lett., vol. 92, 2008, 133304. https://doi.org/10.1063/1.2904632
  11. S.H. Eom et al., "Low Voltage and Very High Efficiency Deep-Blue Phosphorescent Organic Light-Emitting Devices," Appl. Phys. Lett., vol. 93, 2008, 133309. https://doi.org/10.1063/1.2996274
  12. J. Lee et al., "Enhanced Efficiency and Rreduced Roll-Off in Blue and White Phosphorescent Organic Light-Emitting Diodes with a Mixed Host Structure," Appl. Phys. Lett., vol. 94, 2009, 193305. https://doi.org/10.1063/1.3136861
  13. J. Lee et al., "Improved Performance of Blue Phosphorescent Organic Light-Emitting Diodes with a Mixed Host System," Appl. Phys. Lett., vol. 95, 2009, 253304. https://doi.org/10.1063/1.3276075
  14. J. Lee et al., "Effects of Interlayers on Phosphorescent Blue Organic Light-Emitting Diodes," Appl. Phys. Lett., vol. 92, 2008, 203305. https://doi.org/10.1063/1.2936837
  15. C. Adachi et al., "Endothermic Energy Transfer: A Mechanism for Generating Very Efficient High-Energy Phosphorescent Emission in Organic Materials," Appl. Phys. Lett., vol. 79, 2001, pp. 2082-2084. https://doi.org/10.1063/1.1400076
  16. H. Inomata et al., "High-Efficiency Organic Electrophosphorescent Diodes Using 1,3,5-Triazine Electron Transport Materials," Chem. Mater., vol. 16, 2004, pp. 1285-1291. https://doi.org/10.1021/cm034689t
  17. S.J. Su et al., "Wide-Energy-Gap Electron-Transport Materials Containing 3,5-Dipyridylphenyl Moieties for an Ultra High Efficiency Blue Organic Light-Emitting Device," Chem. Mater., vol. 20, 2008, pp. 5951-5953. https://doi.org/10.1021/cm801727d
  18. R.J. Holmes et al., "Efficient, Deep-Blue Organic Electrophosphorescence by Guest Charge Trapping," Appl. Phys. Lett., vol. 83, 2003, pp. 3818-3820. https://doi.org/10.1063/1.1624639
  19. M.H. Tsai et al., "Triphenylsilyl- and Trityl-Substituted Carbazole-Based Host Materials for Blue Electrophosphorescence," ACS Appl. Mater. Interfaces, vol. 1, 2009, pp. 567-574. https://doi.org/10.1021/am800124q
  20. J.J. Lin et al., "A Highly Efficient Host/Dopant Combination for Blue Organic Electrophosphorescence Devices," Adv. Funct. Mater., vol. 18, 2008, pp. 485-491. https://doi.org/10.1002/adfm.200700537
  21. Y. Kawamura et al, "Intermolecular Interaction and a Concentration-Quenching Mechanism of Phosphorescent Ir(III) Complexes in a Solid Film," Phys. Rev. Lett., vol. 96, Jan. 2006, 017404. https://doi.org/10.1103/PhysRevLett.96.017404
  22. J. Lee et al., "Efficient White Phosphorescent Organic Light-emitting Diodes for Solid-State Lighting Applications Using an Exciton-confining Emissive-Layer Structure," J. Info. Display, vol. 10, 2009, pp. 92-95. https://doi.org/10.1080/15980316.2009.9652088
  23. J. Lee et al., "Effects of Triplet Energies and Transporting Properties of Carrier Transporting Materials on Blue Phosphorescent Organic Light Emitting Devices," Appl. Phys. Lett., vol. 93, 2008, 123306. https://doi.org/10.1063/1.2978235
  24. Y. Zheng et al., "Efficient Deep-Blue Phosphorescent Organic Light-Emitting Device with Improved Electron and Exciton Confinement," Appl. Phys. Lett., vol. 92, 2008, 223301. https://doi.org/10.1063/1.2937403
  25. S.-H. Eom et al., "Effect of Electron Injection and Transport Materials on Efficiency of Deep-Blue Phosphorescent Organic Light-Emitting Devices," Org. Electron., vol. 10, 2009, pp. 686-691. https://doi.org/10.1016/j.orgel.2009.03.002
  26. J. Lee et al., "Stable Efficiency Roll-off in Blue Phosphorescent Organic Light-Emitting Diodes by Host Layer Engineering," Org. Electron., vol. 10, 2009, pp. 1529-1533. https://doi.org/10.1016/j.orgel.2009.08.020
  27. J. Lee et al., "Effects of Charge Balance on Device Performances in Deep Blue Phosphorescent Organic Light-Emitting Diodes," Org. Electron., vol. 11, 2010, pp. 1159-1164. https://doi.org/10.1016/j.orgel.2010.04.014
  28. K. Walzer et al., "Highly Efficient Organic Devices Based on Electrically Doped Transport Layers," Chem. Rev., vol. 107, 2007, pp. 1233-1271. https://doi.org/10.1021/cr050156n

Cited by

  1. Controlling the optical efficiency of the transparent organic light-emitting diode using capping layers vol.14, pp.2, 2012, https://doi.org/10.1080/15980316.2013.783512
  2. Transparent OLED Lighting Panel Design Using Two-Dimensional OLED Circuit Modeling vol.35, pp.4, 2012, https://doi.org/10.4218/etrij.13.1912.0020
  3. Enhanced and balanced efficiency of white bi-directional organic light-emitting diodes. vol.21, pp.23, 2012, https://doi.org/10.1364/oe.21.028040
  4. Random nanostructure scattering layer for suppression of microcavity effect and light extraction in OLEDs. vol.39, pp.12, 2012, https://doi.org/10.1364/ol.39.003527
  5. Light diffusing effects of nano and micro-structures on OLED with microcavity vol.22, pp.6, 2012, https://doi.org/10.1364/oe.22.0a1507
  6. Surface Control of Planarization Layer on Embossed Glass for Light Extraction in OLEDs vol.36, pp.5, 2014, https://doi.org/10.4218/etrij.14.0113.0845
  7. Design of SCR-Based ESD Protection Circuit for 3.3 V I/O and 20 V Power Clamp vol.37, pp.1, 2012, https://doi.org/10.4218/etrij.15.0114.0730
  8. White Organic Light Emitting Diodes with a Random Scattering Layer for an Internal Light Extraction vol.5, pp.1, 2012, https://doi.org/10.1149/2.0181601jss