DOI QR코드

DOI QR Code

Stability Assessment of FKP System by NGII using Long-term Analysis of NTRIP Correction Signal

NTRIP 보정신호 분석을 통한 국토지리정보원 FKP NRTK 시스템 안정성 평가

  • Kim, Min-Ho (Dept. Geoinformation Engineering, Sejong University) ;
  • Bae, Tae-Suk (Dept. Geoinformation Engineering, Sejong University)
  • Received : 2013.07.17
  • Accepted : 2013.08.30
  • Published : 2013.08.31

Abstract

Despite the advantage of unlimited access, there are insufficient studies for the accuracy and stability of FKP that blocks the spread of the system for various applications. Therefore, we performed a long-term analysis from continuous real-time positioning, and investigated the error characteristics dependent on the size and the surrounding environment. The FKP shows significant changes in the positioning accuracy at different times of day, where the accuracy during daytime is worse than that of nighttime. In addition, the size and deviation of FKP correction may change with the ionospheric conditions, and high correlation between ambiguity resolution rate and the deviation of correction was observed. The receivers continuously request the correction information in order to cope with sudden variability of ionosphere. On the other hand, the correction information was not received up to an hour in case of stable ionospheric condition. It is noteworthy that the outliers of FKP are clustered in their position with some biases. Since several meters of errors can be occurred for kinematic positioning with FKP, therefore, it is necessary to make appropriate preparation for real-time applications.

네트워크 RTK는 다수의 기준점에서 관측된 반송파 위상정보를 이용하여 네트워크 내부에 위치한 이동점의 좌표를 실시간으로 cm의 정확도를 제공할 수 있다. 따라서 많은 분야에서 네트워크 RTK의 가용성이 확대되고 있으며, 이에 따른 활용연구가 활발하게 진행되고 있다. 그러나 국토지리정보원 FKP 시스템은 접속 무제한 서비스라는 장점에도 불구하고 정확도 검증 및 안정성에 관한 연구가 미비하여, FKP의 가용성 범위의 확대가 더딘 실정이다. 따라서 FKP의 활용성을 증가시키기 위해서는 FKP 시스템의 정확도 검증 및 안정성에 관한 연구가 요구된다. 본 연구에서는 장기적이고 연속적인 실시간 위치결정을 통하여 FKP 시스템 안정성에 대한 분석을 수행하였으며, 오차의 크기와 수신환경에 따른 오차변화 및 실시간 위치결정 안정성을 분석하였다. FKP는 관측시간대에 따라 위치 정확도에서 상당한 차이를 보였으며, 낮 시간대의 위치 정확도가 낮은 것으로 나타났다. 그러나 모호정수가 결정된 경우 평면성분의 오차가 ${\pm}0.05m$ 이내에 포함될 확률이 약 90% 이상으로서 실시간 이동측위로써 가용성을 확인하였다. 또한 FKP 보정신호를 분석한 결과, 전리층 환경에 따라 보정값의 크기와 분산이 변화되며, 낮 시간대에서 보정값의 분산과 모호정수 결정율간의 높은 상관성이 있는 것으로 분석되었다. 수신기는 전리층 환경이 급격히 변화되는 상황에 대응하기 위하여, 보정신호를 실시간으로 연속적으로 수신하는 구간이 나타났으며, 전리층 환경이 안정적인 경우, 보정신호를 최대 1시간 이상 수신하지 않는 경우도 분석되었다. FKP는 과대오차의 위치형태가 바이어스를 포함한 군집을 이루며, 이것은 FKP를 이용한 이동측위 시 수 미터 이상의 오차를 포함할 가능성을 내포하고 있으므로 이에 대한 적절한 대비책을 마련하는 것이 필요하다.

Keywords

References

  1. Bae, T. (2011), VRS-based Precision Positioning using Civilian GPS Code Measurements, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 29, No. 2, pp. 201-208. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2011.29.2.201
  2. Gordini, C., Kealy, A. N., Grgich, P. M., and Hale, M. J. (2006), Testing and Evaluation of a GPS CORS Network for Real Time Centimetric Positioning - The Victoria $GPSnet^{TM}$, International Global Navigation Satellite Systems Society IGNSS Symposium 2006, 17-21 July, Australia, unpaginated CD-ROM.
  3. Han, J., Kwon, J., and Hong, C. (2010), Analysis of Network- RTK(VRS) Positioning Accuracy for Surveying Public Control Pont, Journal of the Korean Society for GeoSpatial Information System, Vol. 18, No. 2, pp. 13-20. (in Korean with English abstract)
  4. Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J. (2001), Global Positioning System Theory and Practice: Fifth edition, Spring-Verlag Wien New York., 382p.
  5. Hong, S. (2013), The Accuracy Analysis of VRS GNSS for Applying Cadastral Surveying, Journal of the Korea Academia-Industrial cooperation Society, Vol. 14, No. 1, pp. 94-100. (in Korean with English abstract) https://doi.org/10.5762/KAIS.2013.14.1.94
  6. Janssen, V. (2009), A comparison of the VRS and MAC principles for network RTK, International Global Navigation Satellite Systems Society IGNSS Symposium 2009, 1-3 December, Australia, unpaginated CD-ROM.
  7. Jung, K. (2005), A Study on Network-Based RTK GPS Positioning, Master's thesis, Kyungil University, Gyeongsan, Korea, 89p. (in Korean with English abstract)
  8. Kim, S. (2006), A Study on the Application of Network RTK-GPS for Cadastral Survey, Master's thesis, Industry Kumoh National Institute of Technology, Gumi, Korea, 77p. (in Korean with English abstract)
  9. Kim, S. (2012), Establishing a Dynamic National Geodetic Reference Frame Considering Discontinuity of Crustal Movement, Master's thesis, Sejong University, Seoul, Korea, 160p. (in Korean with English abstract)
  10. Kim, M. and Bae, T. (2013), Study of availability and accuracy of FKP through comparative analysis of network-RTK, Conference of the Korean Association of Geographic Information Studies 2013, 9-10 May, Gongju, pp. 82-83. (in Korean with English abstract)
  11. Kim, M., Bae, T., and Yun, S. (2013), Analysis of Network- RTK(FKP) correction signal stability and ambiguity fixing rate, Conference of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography 2013, 25-26 April, Busan, pp. 77-80. (in Korean with English abstract)
  12. Kim, H., Yu, G., Park, K., and Ha, J. (2008), Accuracy Evaluation of VRS RTK Surveys Inside the GPS CORS Network Operated by National Geographic Information Institute, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 26, No. 2, pp. 139-147. (in Korean with English abstract)
  13. Klobuchar, J. (1986), Design and characteristics of the GPS ionospheric time-delay algorithm for single-frequency users, Position Location and Navigation Symposium 1986, 4-7 November, Las Vegas, Nevada, pp. 280-286, unpaginated CD-ROM.
  14. Lee, M. (2011), Analysis of Bridge Monitoring using VRS GPS, Master's thesis, Kyungpook National University, Sangju, Korea, 59p. (in Korean with English abstract)
  15. NMEA (2002), NMEA 0183-Standard For Interfacing Marine Electronic Devices, NMEA 0183 Version 3.01, National Marine Electronics Association, U.S.A.
  16. No, S., Han, J., and Kwon, J. (2012), Accuracy Analysis of Network-RTK(VRS) for Real Time Kinematic Positioning, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 30, No. 4, pp. 389-396. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2012.30.4.389
  17. Oh, J., (2013), Feasibility Study on The Surveying Public Control Point by Network RTK-VRS, Master's thesis, Korea National University of Transportation, Chungju, Korea, 56p. (in Korean with English abstract)
  18. Park, H. (2009), A Study on Building Displacement using Network RTK, Master's thesis, University of Seoul, Seoul, Korea, 54p. (in Korean with English abstract)
  19. RTCM (2001), RTCM recommended strandards for differential GNSS(Global Navigation Satellite Systems) service version 2.3, RTCM Special Committee No.104, Radio Technical Commission For Maritime Servieces, U.S.A.
  20. Takac, F. and Zelzer, O. (2008), The Relationship Between Network RTK Solutions MAC, VRS, PRS, FKP and i-MAX, Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), 16-19 September, Savannah, pp. 348-355.
  21. Wubbena, G., Bagge, A., and Schmitz, M. (2001), Network- Based Techniques for RTK Applications, Proceedings of the Japan Insitute of Navigation, GPS Symposium, 14-16 November, Tokyo, pp. 53-65.
  22. Yim, J. (2012), A Study on the accuracy of the FKP-GPS, Master's thesis, Kyonggi University, Suwon, Korea, 51p. (in Korean with English abstract)

Cited by

  1. Performance Analysis of Network-RTK Techniques for Drone Navigation considering Ionospheric Conditions vol.2018, pp.1687-7268, 2018, https://doi.org/10.1155/2018/5154697
  2. 공공측량 및 지적재조사 사업 적용을 위한 FKP 정밀도 분석 vol.22, pp.3, 2013, https://doi.org/10.12672/ksis.2014.22.3.023
  3. 인천지역 통합기준점에서 Network-RTK 측량기법의 비교 vol.32, pp.5, 2013, https://doi.org/10.7848/ksgpc.2014.32.5.469
  4. 차량항법용 네트워크 RTK 기반 연구 vol.33, pp.5, 2015, https://doi.org/10.7848/ksgpc.2015.33.5.343