DOI QR코드

DOI QR Code

AC Electrical Treeing Phenomena in an Epoxy System with Low-chlorine BDGE at Various Electric Field Frequencies

  • Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
  • Received : 2013.10.31
  • Accepted : 2013.11.07
  • Published : 2013.12.25

Abstract

An alternating current (AC) electrical treeing phenomena in an epoxy system with low chlorine BDGE (1,4-butanediol diglycidyl ether) was studied in a needle-plate electrode arrangement. To measure the treeing propagation rate and breakdown time, a constant AC of 10 kV with three different electric field frequencies (60, 500, and 1,000 Hz) was applied to the needle-plate electrode specimen at $130^{\circ}C$ in aninsulating oil bath. The treeing propagation rate of the DGEBA/high-chlorine BDGE system was higher than that of the DGEBA/low-chlorine BDGE system and the breakdown time of the system with high-chlorine BDGE was lower than that of the system with low-chlorine BDGE. These results implied that chlorine had a negative effect on the electrical insulation property of the epoxy system. As the electric field frequency increased, the treeing propagation rate increased and the breakdown time decreased.

Keywords

References

  1. J. Y. Lee, M. J. Shim and S. W. Kim, Polym. Eng. Sci., 39, 1993 (1999) [DOI: http://dx.doi.org/10.1002/pen.11592].
  2. Y. S. Cho, M. J. Shim and S. W. Kim, Mater. Chem. Phys., 66, 70 (2000) [DOI: http://dx.doi.org/10.1016/S0254-0584(00)00272-8].
  3. R. Sarathi, R. K. Sahu and P. Rajeshkumar, Mater. Sci. Eng.: A, 445, 567 (2007) [DOI: http://dx.doi.org/10.1016/j.msea.2006.09.077].
  4. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719 (1994) [DOI: http://dx.doi.org/10.1021/cm00046a026].
  5. C. Zilg, R. Mulhaupt, and J. Finter, Macromol. Chem. Phys., 200, 661 (1999) [DOI: http://dx.doi.org/10.1002/(SICI)1521-3935(19990301].
  6. T. Imai, F. Sawa, T. Ozaki, T. Shimizu, R. Kido, M. Kozako, and T. Tanaka, IEEE Transactions on Dielectrics and Electrical Insulation, 13, 445 (2006) [DOI: http://dx.doi.org/10.1109/TDEI.2006.1624291].
  7. J. J. Park, C. H. Lee, J. Y. Lee and H. D. Kim, IEEE Trans. Dielectr. Electr. Insul., 18, 667 (2011) [DOI: http://dx.doi.org/10.1109/TDEI.2011.5931051].
  8. M. S. Bhatnagar, The Polymeric Materials Encyclopedia, ed. J. C. Salamone, CRC Press, Inc. (1996).
  9. T. Tanaka, G. C. Montanari and R. Mulhaupt, IEEE Trans. Dielectr. Electr. Insul., 11, 763 (2004) [DOI: http://dx.doi.org/10.1109/TDEI.2004.1349782].
  10. T. Imai, F. Sawa, T. Yoshimitsu, T. Ozaki, and T. Shimizu, IEEE Annual Report Conference on CEIDP, p.239 (2004).
  11. T. Tanaka, IEEE Transactions on Dielectrics and Electrical Insulation, 9, 704 (2002) [DOI: http://dx.doi.org/10.1109/TDEI.2002.1038658].
  12. R. Vogelsan, T. Farr, and K. Frohlich, IEEE Transactions on Dielectrics and Electrical Insulation, 13, 373 (2006) [DOI: http:// dx.doi.org/10.1109/TDEI.2006.1624282].
  13. L. P. Witnauer, H. B. Knight, W. E. Palm, R. E. Koos, W. C. Ault, and D. Swern, Ind. Eng. Chem., 47, 2304 (1955) [DOI: http:// dx.doi.org/10.1021/ie50551a034].
  14. K. Theodosiou and I. Gialas, J. Electr. Eng., 59, 248 (2008).

Cited by

  1. The Influence of Surface Modified Nano Alumina for Electrical Treeing in Epoxy Insulation vol.65, pp.7, 2016, https://doi.org/10.5370/KIEE.2016.65.7.1218