DOI QR코드

DOI QR Code

Performance Investigation of Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) in Korea

태양열 이용 해양온도차발전시스템의 성능 예측

  • Nguyen, Van Hap (School of Mechanical Engineering, University of Ulsan) ;
  • Lee, Geun Sik (School of Mechanical Engineering, University of Ulsan)
  • Received : 2012.05.09
  • Accepted : 2012.08.29
  • Published : 2013.01.01

Abstract

The use of ocean thermal energy conversion (OTEC) to generate electricity is one of the methods proposed to utilize renewable energy and to protect the environment. In this study, simulations were performed to investigate the effect of weather conditions in the Ulsan region, Korea, on the efficiency of a solar-heating OTEC (SH-OTEC) system. This system utilizes solar thermal energy as the secondary heat source. Various working fluids were also simulated to select one that is suitable for this system. The results showed that R152A, R600, and R600A, in that order, were the most suitable working fluids. The effective area of the solar collector for a $20^{\circ}C$ increase in the collector outlet temperature fluctuated from 50 to $97m^2$ owing to the change in the monthly average solar gain. The annual average efficiency of the SH-OTEC increases to 6.23%, compared to that of a typical conventional OTEC, which is 2-4%.

전력을 생산하기 위해 해양온도차발전을 이용하는 것은 재생에너지를 이용하고 환경을 보호하는 한 가지 방법이다. 본 연구에서는 울산지역의 기후조건이 태양열 이용 해양온도차발전(SH-OTEC)에 미치는 영향을 조사하기 위하여 시뮬레이션을 수행하였다. 태양열 에너지는 제 2 의 열원으로 사용되었다. SH-OTEC 시스템에 사용할 가장 적합한 작동유체를 선정하기 위하여 여러 작동유체를 수치모사하였다. 해석결과, R152A 가 가장 적합한 작동유체로 나타났으며, R600 와 R600A 가 각각 그 다음 순으로 나타났다. 집열판 출구온도를 $20^{\circ}C$ 증가하였을 때 집열판의 유효면적은 월평균 태양에너지 게인(gain)의 변화로 인하여 $50m^2$ 에서 $97m^2$ 으로 요동함을 볼 수 있었다. 2-4%의 전형적인 해양온도차발전의 효율은 태양열을 이용함으로써 연평균 효율은 6.23%까지 증가하였다.

Keywords

References

  1. Yeh, R.H., Su, T.Z. and Yang, M.S., 2005, "Maximum Output of an OTEC Power Plant," Ocean Engineering, Vol. 32, pp. 685-700. https://doi.org/10.1016/j.oceaneng.2004.08.011
  2. Tahara, K., Horiuchi, K., Kojima, T. and Inaba, A., 1995, "Ocean Thermal Energy Conversion (OTEC) System as a Countermeasure for CO2 Problem - Energy Balance and CO2 Reduction Potential," Energy Conversion and Management, Vol. 36, No. 6-9, pp. 857-860. https://doi.org/10.1016/0196-8904(95)00138-4
  3. Tong, W., Liang, D., Chuangang, G. and Bo, Y., 2008, "Performance Analysis and Improvement for CCOTEC System," Journal of Mechanical Science and Technology, Vol. 22, pp. 1977-1983. https://doi.org/10.1007/s12206-008-0742-9
  4. Yamada, N., Hoshi, A. and Ikegami, Y., 2009, "Performance Simulation of Solar-Boosted Ocean Thermal Energy Conversion," Renewable Energy, Vol. 34, pp. 1752-1758. https://doi.org/10.1016/j.renene.2008.12.028
  5. Straatman, P.T and van Sark, W.G., 2008, "A new Hybrid Ocean Thermal Energy Conversion-Offshore Solar Pond (OTEC-OSP) Design: a Cost Optimization Approach," Solar Energy, Vol. 82, pp. 520-5277. https://doi.org/10.1016/j.solener.2007.12.002
  6. Tchanch, B.F., Papadakis, G., Lambrinos, G. and Frangoudakis, A., 2009, "Fluid Selection for a Low- Temperature Solar Organic Rankine Cycle," Applied Thermal Engineering, Vol. 29, pp. 2468-2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  7. Duffie, J.A. and Beckman, W.A., 1991, Solar Engineering of Thermal Processes, 2nd ed. John Wiley and Sons Inc, USA,
  8. Solar Laboratory of Energy (USA): Manuals of TRNSYS ver.16, University of Wisconsin-Madison, USA, 1994.
  9. Klein, S.A., Engineering Equation Solver. F-Chart Software. Commercial version 6.883-3D.
  10. EnergyPlus Energy Simulation Software: Weather Data.

Cited by

  1. Development of Wheel Loader V-Pattern Operator Model for Virtual Evaluation of Working Performance vol.38, pp.11, 2014, https://doi.org/10.3795/KSME-A.2014.38.11.1201
  2. Design Optimization of Heat Exchangers for Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) Using High-Performance Commercial Tubes vol.40, pp.9, 2016, https://doi.org/10.3795/KSME-B.2016.40.9.557
  3. Design and Analysis of a Radial Turbine for Ocean Thermal Energy Conversion vol.39, pp.3, 2015, https://doi.org/10.3795/KSME-B.2015.39.3.207