DOI QR코드

DOI QR Code

Barium Compounds through Monte Carlo Simulations Compare the Performance of Medical Radiation Shielding Analysis

몬테카를로 시뮬레이션을 통한 바륨화합물의 의료방사선 차폐능 비교 분석

  • Kim, Seonchil (Dept of Radiological Technology, Daegu Health college) ;
  • Kim, Kyotae (Dept. of Hybrid Medicine and Science, Inje University) ;
  • Park, Jikoon (Dept. of Radiological Science, International University of Korea)
  • 김선칠 (대구보건대학교 방사선과) ;
  • 김교태 (인제대학교 융합의과학) ;
  • 박지군 (한국국제대학교 방사선학과)
  • Received : 2013.10.31
  • Accepted : 2013.12.25
  • Published : 2013.12.25

Abstract

This study made a tentative estimation of the shielding rate of barium compound by thickness through monte carlo simulation to apply medical radiation shielding products that can replace existing lead. Barium sulfate($BaSO_4$) was used for the shielding material, and thickness of the shielding material specimen was simulated from 0.1 mm to 5 mm by applying $15{\times}15cm^2$ of specimen area, $4.5g/cm^3$ of density of barium sulfate, and $11.34g/cm^3$ density of lead. Entered source was simulated with 10kVp Step in consecutive X-ray energy spectrum(40 kVp ~ 120 kVp). Absorption probability in 40 kVp ~ 60 kVp showed same shielding rate with lead in 3 mm ~ 5 mm of thickness, but it was identified that under 2 mm, the shielding rate was a bit lower than the existing lead shielding material. Also, the shielding rate in 70 kVp ~ 120 kVp energy band showed similar performance as the existing lead shielding material, but it was tentatively estimated as fairly low shielding rate below 0.5 mm. This study estimated the shielding rate of barium compound as the thickness function of x-ray energy band for medical radiation through monte carlo simulation, and made comparative analysis with existing lead. Also, this study intended to verify application validity of the x-ray shielding material for medical radiation of pure barium sulfate. As a result, it was estimated that the shielding effect was 95% higher than the existing lead 1.5 mm in at least 2 mm thickness of barium compound in medical radiation energy band 70 kVp ~ 120 kVp, and this result is considered valid to be provided as a base data in weight lightening production of radiation shielding product for medical radiation.

본 연구에서는 기존의 납을 대체할 수 있는 의료 방사선 차폐제품 적용을 위해 몬테카를로 시뮬레이션을 통해 바륨화합물의 두께별 차폐능을 모의 추정하였다. 차폐재 물질로는 황산바륨($BaSO_4$)을 이용하였고, 시편의 면적은 $15{\times}15cm^2$, 황산바륨의 밀도는 $4.5g/cm^3$, 납의 밀도 $11.34g/cm^3$를 적용하여 차폐재 시편의 두께를 0.1 mm부터 5 mm까지 시뮬레이션 하였다. 입력 선원은 연속 X-ray 에너지 스펙트럼(40 kVp ~ 120 kVp)에서 10kVp Step으로 시뮬레이션하였다. 40 kVp ~ 60 kVp에서의 흡수확률은 3 mm ~ 5 mm 두께에서는 납과 동일한 차폐능을 나타내었으나, 2 mm 이하에서는 차폐능이 기존 납 차폐재에 비해 다소 차폐능이 떨어지는 결과로 나타났다. 또한 70 kVp ~ 120 kVp 에너지 대역에서의 차폐능은 기존 납 차폐재와 유사한 성능을 보였지만, 0.5 mm 이하에서는 다소 낮은 차폐능으로 모의 추정되었다. 본 연구는 몬테카를로 시뮬레이션을 통해 의료용 엑스선 에너지 대역에 대한 두께 함수로써 바륨화합물의 차폐능을 추정하여 기존의 납과 비교 분석하였다. 또한 순수한 황산바륨의 의료용 방사선 차폐제품 적용가능성을 검증하고자 하였다. 그 결과 의료 방사선 에너지 대역 70 kVp ~ 120 kVp 에서 최소 2 mm 이상의 바륨화합물 두께에서 기존 납 1.5 mm 대비 95% 이상의 차폐효과가 있는 것으로 추정되었으며, 본 결과는 의료용 방사선 차폐제품의 경량화 제작에 기초 자료로 제공될 수 있을 것으로 사료된다.

Keywords

References

  1. Kyotae Kim, etc "Absorbed spectrum comparison of lead and tungsten in continuous x-ray energy using monte carlo simulation" J. Korean. soc. radiol, Vol. 27, pp 483-487, 2012. https://doi.org/10.7742/jksr.2012.6.6.483
  2. Korean intellectual property office patent gazette (A), Radiation shielding fabric, Number 10-2009-0011082, 2009.
  3. Korean intellectual property office patent gazette (A), Radiation shielding fabric, Number 10-08600332, 2008.
  4. Korean intellectual property office patent gazette (A), Excellent X-ray shielding textile products and its manufacturing method, Number 2001-0056190, 2001.
  5. Korean intellectual property office patent gazette (A), Barium sulfate fiber and manufacturing method of radiation shielding, Number 2000-0007084, 2000.
  6. Kim, Y.K., Jang, Y.I., Kim, J.M., The weight of the apron for radiation protection and shielding performance improvement, Journal of Radiol. Sci. Tech., Vol. 26, pp. 45-51, 2003.
  7. Kim, S.C. Park, M.H., Development of radiation shield with environmentally-friendly materials; I : Comparison and evaluation of fiber, rubber, silicon in the radiation shielding sheet. Journal Radiol Sci. Technol., Vol. 33, pp. 121-126, 2010.
  8. Judith.F. Briesmeister, "MCNPTM A General Monte Carlo N-Particle Transsport Code. Ver. 4C", 2000.
  9. Akkurt, I., Basyigit, C., Kilincarslan, S., Mavi, B., Akkurt, A., "Radiation shielding of concretes containing different aggregates". Cem. Concr. Compos. Vol. 28, pp. 153-157, 2006. https://doi.org/10.1016/j.cemconcomp.2005.09.006
  10. Bushong SC: Radiologic science for technologists. 2nd ed. The C.V. Mosby Company, ST. Louis, Toronto, London, pp. 98-445, 1980.
  11. Kim, S.C., Park, M.H., Development of radiation shielding sheet with environmentally-friendly materials. II: evaluation of Barum, Tourmaline, silicon polymers in the radiation shielding sheet. J. Radiol. Sci. Technol. Vol. 34, pp. 141-147, 2011.

Cited by

  1. The Study on Design of Customized Radiation Protective Layer for Medical Radiation Dose Reduction vol.8, pp.6, 2014, https://doi.org/10.7742/jksr.2014.8.6.333
  2. 몬테카를로 시뮬레이션을 이용한 차폐체 원소 평가 vol.40, pp.2, 2017, https://doi.org/10.17946/jrst.2017.40.2.12
  3. 의료 방사선사용에 따른 납과 텅스텐의 차폐효과 분석 vol.12, pp.2, 2013, https://doi.org/10.7742/jksr.2018.12.2.173
  4. CT 조영제를 이용한 차폐체에 대한 연구 vol.12, pp.5, 2013, https://doi.org/10.7742/jksr.2018.12.5.693
  5. 스크린 프린팅 공법을 통한 방사선 무연 차폐 시트에 관한 연구 vol.12, pp.6, 2013, https://doi.org/10.7742/jksr.2018.12.6.713