DOI QR코드

DOI QR Code

Basic Research of Self Compacting Concrete Using Alkali-Activated Slag Binder

알칼리 활성 슬래그 결합재를 이용한 자기충전 콘크리트의 기초 연구

  • Received : 2013.07.09
  • Accepted : 2013.08.27
  • Published : 2013.12.31

Abstract

The purpose of this study is the basic research of self-compacting concrete using Alkali-Activated Slag (AAS) binder in order to emphasize the durability of structures and facilitate casting the fresh concrete in field. The AAS binder emitted low carbon dioxide ($CO_2$) is eco friendly material of new concept because AAS products not only emit little $CO_2$ during production but also reuse the industrial by-products such as ground granulated blast-furnace slag (GGBS) of the steel mill. Until now, almost of domestic and foreign research are using Ordinary Portland Cement (OPC) for self-compacting concrete, and also, nonexistent research about AAS. The self-compacting concrete must get the performance of flowability, segregation resistance, filling and passing ability. Nine concrete mixes were prepared with the main parameter of unit amount of binder (400, 500, 600 $kg/m^3$) and 3 types of water-binder (W/B) ratio. The results of test were that fresh concretes were satisfied with flowability, segregation resistance, and filling ability of JSCE. But the passing ability was not meet the criteria of EFNARC because of higher viscosity of AAS paste than OPC. This high viscosity of AAS paste enables the manufacturing of self compacting concrete, segregation of which does not occur without the using of viscosity agent. It is necessary that the development of high fluidity AAS binders of higher strength and the study of better passing ability of AAS concrete mixes in order to use self compacting AAS concrete in field.

이 연구는 알칼리 활성 슬래그(alkali-activated slag, AAS) 결합재를 이용하여 자기충전성을 갖는 콘크리트 개발을 위한 기초 연구로서 자기충전 콘크리트에 사용될 AAS 결합재 및 고성능 감수제의 유동성능 평가를 통해 선정하고, 선정된 결합재 및 고성능 감수제를 사용하여 자기충전 콘크리트를 배합한 후 굳기 전 콘크리트의 유동특성을 평가하였다. 높은 pH에서 폴리카르본산계 고성능 감수제의 성능이 저하됨에 따라 비교적 강도가 낮은 약알칼리성 활성화제를 사용한 AAS 결합재를 선정하였다. 시험 결과 일본토목학회(JSCE) 기준인 고유동성, 재료분리 저항성, 간극 충전성은 대부분 만족시켰으나, AAS 페이스트의 기본점성이 OPC에 비해 높은 이유로 유럽통합기준의 간극 통과성은 만족시키지 못했다. 하지만, AAS 결합재를 이용하면 증점제의 사용 없이 재료분리가 발생되지 않는 자기충전 콘크리트 제조가 가능함을 확인하였다. 이 연구는 AAS 결합재를 이용한 자기충전 콘크리트 개발의 기초연구로서 앞으로 현장적용이 가능한 AAS 자기충전 콘크리트 개발을 위해 더 높은 강도의 고유동 결합재와 간극 통과성을 높이기 위한 콘크리트 배합비의 연구가 필요하다.

Keywords

References

  1. Brouwers, H. J. H. and Radix, H. J., "Self-Compacting Concrete: Theoretical and Experimental Study," Cement and Concrete Research, Vol. 35, No. 11, 2005, pp. 2116-2136. (doi: http://dx.doi.org/10.1016/j.cemconres.2005.06.002)
  2. Assie, S., Escadeillas, G., and Wallter, V., "Estimates of Self-compacting Concrete 'Potential' Durability," Concrete Building Materials, Vol. 21, No. 10, 2007, pp. 1909-1917. (doi: http://dx.doi.org/10.1016/j.conbuildmat.2006.06.034)
  3. Okamura, H., Self-compacting High Performance Concrete, Social System Institute, Tokyo, 1999, pp. 50-54.
  4. Okamura, H. and Ozawa, K., "Mix-Design for Selfcompacting Concrete," Concrete Library JSCE, Vol. 25, 1995, pp. 107-120.
  5. Topcu, I. B. and Uygunoglu, T., "Effect of Aggregate Type on Properties of Hardened Self Consolidating Lightweight Concrete (SCLC)," Construction and Building Materials, Vol. 24, No. 7, 2010, pp. 1286-1295. (doi: 10.1016/j.conbuildmat.2009.12.007)
  6. Khayat, K. H., "Workability, Testing and Performance of Self-consolidating Concrete," ACI Material Journal, Vol. 96, No. 3, 1999, pp. 346-353.
  7. Ye, G., Liu, X., De Schutter, G., Poppe, A. M., and Taerwe, L., "Influence of Limestone Powder Used as Filler in SCC on Hydration and Microstructure of Cement Paste," Cement Concrete Composites, Vol. 29, No. 2, 2007, pp. 94-102. (doi: 10.1016/10.1016/j.cemconcomp.2006.09.003)
  8. Poppe, A. M. and Schutter, G. D., "Cement Hydration in the Present of High Filler Contents," Cement Concrete Research, Vol. 35, No. 12, 2005, pp. 2290-2299. (doi: 10.1016/j.cemconres.2005.03.008)
  9. Tukmen, I., "Influence of Different Curing Conditions on the Physical and Mechanical Properties of Concretes with Admixtures of Silica Fume and Blast Furnace Slag," Materials Letters, Vol. 57, No. 29, 2003, pp. 4560-4569. (doi: 10.1016/S0167-577X(03)00362-8)
  10. Song, J. K., Yang, K. H., Kim, G. W., and Kim, B. J., "Properties of Sodium Alkali-Activated Ground Granulated Blast-Furnace Slag (GGBS) Mortar," Journal of Architectural Institute of Korea, Vol. 26, No. 6, 2010, pp. 61-68.
  11. Yang, K. H., Sim, J. I., Lee, S., and Hwang, H. J., "Workability, Compressive Strength and Fire Resistance Characteristics of Cementless Alkali-Activated Lightweight Mortars," Journal of Architectural Institute of Korea, Vol. 25, No. 8, 2009, pp. 151-158.
  12. Yang, K. H., Oh, S. J., and Song, J. K., "Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates," Journal of Korea Concrete Institute, Vol. 20, No. 3, 2008, pp. 405-412. https://doi.org/10.4334/JKCI.2008.20.3.405
  13. Krivenko, P. V., Alkaline Cements and Concretes, Paper Presented at the First International Conference on Alkaline Cements and Concrete, Kiev, Ukraina, 1994, pp. 12-129.
  14. Malolepszy, J. and Petri, M., "High Strength Slag Alkaline Binders," 8th International Congress on the Chemistry of Cement, Rio de Janeiro, Brazil, Vol. 4, 1986, pp. 108-111.
  15. Slota, R. J., "Utilization of Water Glass as an Activator in the Manufacture of Cementitious Materials from Waste By-products," Cement and Concrete Research, Vol. 17, No. 5, 1987, pp. 703-708. https://doi.org/10.1016/0008-8846(87)90032-9
  16. Shi, C. and Li, Y., "Effect of the Modulus of Water Glass on the Activation of Phosphorus Slag," Il Cemento, Vol. 86, No. 3, 1989, pp. 161-168.
  17. Bellmann, F. and Stark, J., "Activation of Blast Furnace Slag by a New Method," Cement and Concrete Research, Vol. 39, Issue 8, 2009, pp. 644-650. (doi: http://dx.doi.org/ 10.1016/j.cemconres.2009.05.012)
  18. JSCE, Standard Test Methods for Self-compacting Concrete, Japan Society of Civil Engineers, Concrete Engineering Series, 31, 2000, pp. 50-77
  19. EFNARC, Specification and Guidelines for Self-Compacting Concrete, 2002, pp. 4-32.
  20. ASTM C 1621/C 1621M-09b, Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring, 2009.
  21. M. Palacios and F. Puertas., "Effect of Superplasticizer and Shirinkage Admixtures on Alkali-Activated Slag Pastes and Mortar," Cement and Concrete Research, Vol. 35, 2005, pp. 1358-1367. (doi: 10.1016/j.cemconres.2004.10.014)

Cited by

  1. An Experimental Study on the Time-Dependent Deformation of the Alkali Activated Slag Concrete vol.15, pp.5, 2015, https://doi.org/10.5345/JKIBC.2015.15.5.457
  2. Experimental Study on Rheological Properties of Alkali Activated Slag Pastes with Water to Binder Ratio vol.27, pp.5, 2015, https://doi.org/10.4334/JKCI.2015.27.5.511