DOI QR코드

DOI QR Code

Assessment of Developmental Toxicants using Human Embryonic Stem Cells

  • Hong, Eui-Ju (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University) ;
  • Jeung, Eui-Bae (Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2013.11.14
  • Accepted : 2013.12.12
  • Published : 2013.12.31

Abstract

Embryonic stem (ES) cells have potential for use in evaluation of developmental toxicity because they are generated in large numbers and differentiate into three germ layers following formation of embryoid bodies (EBs). In earlier study, embryonic stem cell test (EST) was established for assessment of the embryotoxic potential of compounds. Using EBs indicating the onset of differentiation of mouse ES cells, many toxicologists have refined the developmental toxicity of a variety of compounds. However, due to some limitation of the EST method resulting from species-specific differences between humans and mouse, it is an incomplete approach. In this regard, we examined the effects of several developmental toxic chemicals on formation of EBs using human ES cells. Although human ES cells are fastidious in culture and differentiation, we concluded that the relevancy of our experimental method is more accurate than that of EST using mouse ES cells. These types of studies could extend our understanding of how human ES cells could be used for monitoring developmental toxicity and its relevance in relation to its differentiation progress. In addition, this concept will be used as a model system for screening for developmental toxicity of various chemicals. This article might update new information about the usage of embryonic stem cells in the context of their possible ability in the toxicological fields.

Keywords

References

  1. Hofer, T.I., Gerner, I., Gundert-Remy, U., Liebsch, M., Schulte, A., Spielmann, H., Vogel, R. and Wettig, K. (2004) Animal testing and alternative approaches for the human health risk assessment under the proposed new European chemicals regulation. Arch. Toxicol., 78, 549-564. https://doi.org/10.1007/s00204-004-0577-9
  2. Yamanaka, S., Li, J., Kania, G., Elliott, S., Wersto, R.P., Van Eyk, J., Wobus, A.M. and Boheler, J.R. (2008) Pluripotency of embryonic stem cells. Cell Tissue Res., 331, 5-22. https://doi.org/10.1007/s00441-007-0520-5
  3. Heuer, J., Bremer, S., Pohl, I. and Spielmann, H. (1993) Development of an in vitro embryotoxicity test using murine embryonic stem cell cultures. Toxicol. In Vitro, 7, 551-556. https://doi.org/10.1016/0887-2333(93)90064-C
  4. Scholz, G., Pohl, I., Genschow, E., Klemm, M. and Spielmann, H. (1999) Embryotoxicity screening using embryonic stem cells in vitro: correlation to in vivo teratogenicity. Cells Tissues Organs, 165, 203-211. https://doi.org/10.1159/000016700
  5. Genschow, E., Scholz, G., Brown, N.A., Piersma, A.H., Brady, M., Clemann, N., Huuskonen, H., Paillard, F., Bremer, S. and Spielmann, H. (1999) [Development of prediction models for three in vitro embryotoxicity tests which are evaluated in an ECVAM validation study]. ALTEX, 16, 73-83.
  6. Seiler, A.E. and Spielmann, H. (2011) The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat. Protoc., 6, 961-978. https://doi.org/10.1038/nprot.2011.348
  7. Spielmann, H., Genschow, E., Scholz, G., Brown, N.A., Piersma, A.H., Brady, M., Clemann, N., Huuskonen, H., Paillard, F., Bremer, S. and Becker, K. (2001) Preliminary results of the ECVAM validation study on three in vitro embryotoxicity tests. Altern. Lab. Anim., 29, 301-303.
  8. Chen, R., Chen, J., Cheng, S., Qin, J., Li, W., Zhang, L., Jiao, H., Yu, X., Zhang, X., Lahn, B.T. and Xiang, A.P. (2010) Assessment of embryotoxicity of compounds in cosmetics by the embryonic stem cell test. Toxicol. Mech. Methods, 20, 112-118. https://doi.org/10.3109/15376510903585450
  9. de Jong, E., Louisse, J., Verwei, M., Blaauboer, B.J., van de Sandt, J.J., Woutersen, R.A., Rietjens, I.M. and Piersma, A.H. (2009) Relative developmental toxicity of glycol ether alkoxy acid metabolites in the embryonic stem cell test as compared with the in vivo potency of their parent compounds. Toxicol. Sci., 110, 117-124. https://doi.org/10.1093/toxsci/kfp083
  10. Eckardt, K. and Stahlmann, R. (2010) Use of two validated in vitro tests to assess the embryotoxic potential of mycophenolic acid. Arch. Toxicol., 84, 37-43. https://doi.org/10.1007/s00204-009-0476-1
  11. Paquette, J.A., Kumpf, S.W., Streck, R.D., Thomson, J.J., Chapin, R.E. and Stedman, D.B. (2008) Assessment of the Embryonic Stem Cell Test and application and use in the pharmaceutical industry. Birth Defects Res. Part B, 83, 104-111. https://doi.org/10.1002/bdrb.20148
  12. Spielmann, H., Balls, M., Dupuis, J., Pape, W.J., Pechovitch, G., de Silva, O., Holzhutter, H.G., Clothier, R., Desolle, P., Gerberick, F., Liebsch, M., Lovell, W.W., Maurer, T., Pfannenbecker, U., Potthast, J.M., Csato, M., Sladowski, D., Steiling, W. and Brantom, P. (1998) The International EU/COLIPA In Vitro Phototoxicity Validation Study: Results of Phase II (Blind Trial). Part 1: The 3T3 NRU Phototoxicity Test. Toxicol. In Vitro, 12, 305-327. https://doi.org/10.1016/S0887-2333(98)00006-X
  13. Genschow, E., Scholz, G., Brown, N., Piersma, A., Brady, M., Clemann, N., Huuskonen, H., Paillard, F., Bremer, S., Becker, K. and Spielmann, H. (2000) Development of prediction models for three in vitro embryotoxicity tests in an ECVAM validation study. In Vitro Mol. Toxicol., 13, 51-66.
  14. Genschow, E., Spielmann, H., Scholz, G., Pohl, I., Seiler, A., Clemann, N., Bremer, S. and Becker, K. (2004) Validation of the embryonic stem cell test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern. Lab. Anim., 32, 209-244.
  15. Suzuki, N., Ando, S., Sumida, K., Horie, N. and Saito, K. (2011) Analysis of altered gene expression specific to embryotoxic chemical treatment during embryonic stem cell differentiation into myocardiac and neural cells. J. Toxicol. Sci., 36, 569-585. https://doi.org/10.2131/jts.36.569
  16. Suzuki, N., Ando, S., Yamashita, N., Horie, N. and Saito, K. (2011) Evaluation of novel high-throughput embryonic stem cell tests with new molecular markers for screening embryotoxic chemicals in vitro. Toxicol. Sci., 124, 460-471. https://doi.org/10.1093/toxsci/kfr250
  17. Flora, S.J. and Mehta, A. (2009) Monoisoamyl dimercapto-succinic acid abrogates arsenic-induced developmental toxicity in human embryonic stem cell-derived embryoid bodies: comparison with in vivo studies. Biochem. Pharmacol., 78, 1340-1349. https://doi.org/10.1016/j.bcp.2009.07.003
  18. Mehta, A., Konala, V.B., Khanna, A. and Majumdar, A.S. (2008) Assessment of drug induced developmental toxicity using human embryonic stem cells. Cell Biol. Int., 32, 1412-1424. https://doi.org/10.1016/j.cellbi.2008.08.012
  19. Taha, M.F., Valojerdi, M.R., Hatami, L. and Javeri, A. (2012) Electron microscopic study of mouse embryonic stem cell-derived cardiomyocytes. Cytotechnology, 64, 197-202. https://doi.org/10.1007/s10616-011-9411-4
  20. Genschow, E., Spielmann, H., Scholz, G., Seiler, A., Brown, N., Piersma, A., Brady, M., Clemann, N., Huuskonen, H., Paillard, F., Bremer, S. and Becker, K. (2002) The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. European Centre for the Validation of Alternative Methods. Altern. Lab. Anim., 30, 151-176.
  21. Marx-Stoelting, P., Adriaens, E., Ahr, H.J., Bremer, S., Garthoff, B., Gelbke, H.P., Piersma, A., Pellizzer, C., Reuter, U., Rogiers, V., Schenk, B., Schwengberg, S., Seiler, A., Spielmann, H., Steemans, M., Stedman, D.B., Vanparys, P., Vericat, J.A., Verwei, M., van der Water, F., Weimer, M. and Schwarz, M. (2009) A review of the implementation of the embryonic stem cell test (EST). The report and recommendations of an ECVAM/ReProTect Workshop. Altern. Lab. Anim., 37, 313-328.
  22. Buesen, R., Genschow, E., Slawik, B., Visan, A., Spielmann, H., Luch, A. and Seiler, A. (2009) Embryonic stem cell test remastered: comparison between the validated EST and the new molecular FACS-EST for assessing developmental toxicity in vitro. Toxicol. Sci., 108, 389-400. https://doi.org/10.1093/toxsci/kfp012
  23. Seiler, A., Visan, A., Buesen, R., Genschow, E. and Spielmann, H. (2004) Improvement of an in vitro stem cell assay for developmental toxicity: the use of molecular endpoints in the embryonic stem cell test. Reprod. Toxicol., 18, 231-240. https://doi.org/10.1016/j.reprotox.2003.10.015
  24. Pedersen, A., Skjong, C. and Shawlot, W. (2005) Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev. Biol., 288, 571-581. https://doi.org/10.1016/j.ydbio.2005.09.027
  25. Chavez, S.L., Meneses, J.J., Nguyen, H.N., Kim, S.K. and Pera, R.A. (2008) Characterization of six new human embryonic stem cell lines (HSF7, -8, -9, -10, -12, and -13) derived under minimal-animal component conditions. Stem Cells Dev., 17, 535-546. https://doi.org/10.1089/scd.2007.0216
  26. Gepstein, L. (2002) Derivation and potential applications of human embryonic stem cells. Circ. Res., 91, 866-876. https://doi.org/10.1161/01.RES.0000041435.95082.84
  27. zur Nieden, N.I., Kempka, G. and Ahr, H.J. (2004) Molecular multiple endpoint embryonic stem cell test--a possible approach to test for the teratogenic potential of compounds. Toxicol. Appl. Pharmacol., 194, 257-269. https://doi.org/10.1016/j.taap.2003.09.019
  28. Hansen, D.K., Grafton, T.F., Cross, D.R. and James, S.J. (1995) Partial attenuation of hydroxyurea-induced embryotoxicity by deoxyribonucleotides in mouse and rat embryos treated in vitro. Toxicol. In Vitro, 9, 11-19. https://doi.org/10.1016/0887-2333(94)00192-W
  29. Lau, C., Mole, M.L., Copeland, M.F., Rogers, J.M., Kavlock, R.J., Shuey, D.L., Cameron, A.M., Ellis, D.H., Logsdon, T.R., Merriman, J. and Setzer, R.W. (2001) Toward a biologically based dose-response model for developmental toxicity of 5-fluorouracil in the rat: acquisition of experimental data. Toxicol. Sci., 59, 37-48. https://doi.org/10.1093/toxsci/59.1.37
  30. Ninomiya, H., Kishida, K., Ohno, Y., Tsurumi, K. and Eto, K. (1994) Effects of cytosine arabinoside on rat and rabbit embryos cultured in vitro. Toxicol. In Vitro, 8, 109-116. https://doi.org/10.1016/0887-2333(94)90214-3
  31. Norton, M.E. (1997) Teratogen update: fetal effects of indomethacin administration during pregnancy. Teratology, 56, 282-292. https://doi.org/10.1002/(SICI)1096-9926(199710)56:4<282::AID-TERA7>3.0.CO;2-0
  32. Adlard, B.P., Dobbing, J. and Sands, J. (1975) A comparison of the effects of cytosine arabinoside and adenine arabinoside on some aspects of brain growth and development in the rat. Br. J. Pharmacol., 54, 33-39. https://doi.org/10.1111/j.1476-5381.1975.tb07406.x
  33. Ortega, A., Puig, M. and Domingo, J.L. (1991) Maternal and developmental toxicity of low doses of cytosine arabinoside in mice. Teratology, 44, 379-384. https://doi.org/10.1002/tera.1420440404
  34. Grafton, T.F., Bazare, J.J. Jr., Hansen, D.K. and Sheehan, D.M. (1987) The in vitro embryotoxicity of 5-fluorouracil in rat embryos. Teratology, 36, 371-377. https://doi.org/10.1002/tera.1420360314
  35. Shuey, D.L., Lau, C., Logsdon, T.R., Zucker, R.M., Elstein, K.H., Narotsky, M.G., Setzer, R.W., Kavlock, R.J. and Rogers, J.M. (1994) Biologically based dose-response modeling in developmental toxicology: biochemical and cellular sequelae of 5-fluorouracil exposure in the developing rat. Toxicol. Appl. Pharmacol., 126, 129-144. https://doi.org/10.1006/taap.1994.1099
  36. Woo, G.H., Bak, E.J., Nakayama, H. and Doi, K. (2006) Molecular mechanisms of hydroxyurea(HU)-induced apoptosis in the mouse fetal brain. Neurotoxicol. Teratol., 28, 125-134. https://doi.org/10.1016/j.ntt.2005.08.002
  37. Spencer, F., Chi, L. and Zhu, M.X. (2000) Hydroxyurea inhibition of cellular and developmental activities in the decidualized and pregnant uteri of rats. J. Appl. Toxicol., 20, 407-412. https://doi.org/10.1002/1099-1263(200009/10)20:5<407::AID-JAT704>3.0.CO;2-T
  38. Hrushesky, W.J., Vyzula, R. and Wood, P.A. (1999) Fertility maintenance and 5-fluorouracil timing within the mammalian fertility cycle. Reprod. Toxicol., 13, 413-420. https://doi.org/10.1016/S0890-6238(99)00037-4
  39. Marcickiewicz, J., Chazan, B., Niemiec, T., Sokolska, G., Troszynski, M., Luczak, M. and Szmigielski, S. (1986) Microwave radiation enhances teratogenic effect of cytosine arabinoside in mice. Biol. Neonate, 50, 75-82. https://doi.org/10.1159/000242571
  40. Gleason, C.A. (1987) Prostaglandins and the developing kidney. Semin. Perinatol., 11, 12-21.
  41. Meyers, R.L., Alpan, G., Lin, E. and Clyman, R.I. (1991) Patent ductus arteriosus, indomethacin, and intestinal distension: effects on intestinal blood flow and oxygen consumption. Pediatr. Res., 29, 569-574.
  42. Johnson, D.C. and Dey, S.K. (1980) Role of histamine in implantation: dexamethasone inhibits estradiol-induced implantation in the rat. Biol. Reprod., 22, 1136-1141. https://doi.org/10.1093/biolreprod/22.5.1136
  43. Snabes, M.C. and Harper, M.J. (1984) Site of action of indomethacin on implantation in the rabbit. J. Reprod. Fertil., 71, 559-565. https://doi.org/10.1530/jrf.0.0710559
  44. Boeuf, H., Hauss, C., Graeve, F.D., Baran, N. and Kedinger, C. (1997) Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J. Cell Biol., 138, 1207-1217. https://doi.org/10.1083/jcb.138.6.1207
  45. Dessi, F., Pollard, H., Moreau, J., Ben-Ari, Y. and Charriaut-Marlangue, C. (1995) Cytosine arabinoside induces apoptosis in cerebellar neurons in culture. J. Neurochem., 64, 1980-1987.
  46. Shuey, D.L., Setzer, R.W., Lau, C., Zucker, R.M., Elstein, K.H., Narotsky, M.G., Kavlock, R.J. and Rogers, J.M. (1995) Biological modeling of 5-fluorouracil developmental toxicity. Toxicology, 102, 207-213. https://doi.org/10.1016/0300-483X(95)03049-L
  47. Yarbro, J.W., Kennedy, B.J. and Barnum, C.P. (1965) Hydroxyurea inhibition of DNA synthesis in ascites tumor. Proc. Natl. Acad. Sci. U. S. A., 53, 1033-1035. https://doi.org/10.1073/pnas.53.5.1033
  48. Jagtap, S., Meganathan, K., Gaspar, J., Wagh, V., Winkler, J., Hescheler, J. and Sachinidis, A. (2011) Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br. J. Pharmacol., 162, 1743-1756. https://doi.org/10.1111/j.1476-5381.2010.01197.x
  49. Jensen, J., Hyllner, J. and Bjorquist, P. (2009) Human embryonic stem cell technologies and drug discovery. J. Cell. Physiol., 219, 513-519. https://doi.org/10.1002/jcp.21732
  50. Krtolica, A. and Giritharan, G. (2010) Use of human embryonic stem cell-based models for male reproductive toxicity screening. Syst. Biol. Reprod. Med., 56, 213-221. https://doi.org/10.3109/19396368.2010.486470
  51. Krug, A.K., Kolde, R., Gaspar, J.A., Rempel, E., Balmer, N.V., Meganathan, K., Vojnits, K., Baquie, M., Waldmann, T., Ensenat-Waser, R., Jagtap, S., Evans, R.M., Julien, S., Peterson, H., Zagoura, D., Kadereit, S., Gerhard, D., Sotiriadou, I., Heke, M., Natarajan, K., Henry, M., Winkler, J., Marchan, R., Stoppini, L., Bosgra, S., Westerhout, J., Verwei, M., Vilo, J., Kortenkamp, A., Hescheler, J., Hothorn, L., Bremer, S., van Thriel, C., Krause, K.H., Hengstler, J.G., Rahnenfuhrer, J., Leist, M. and Sachinidis, A. (2013) Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch. Toxicol., 87, 123-143. https://doi.org/10.1007/s00204-012-0967-3
  52. Krtolica, A., Ilic, D., Genbacev, O. and Miller, R.K. (2009) Human embryonic stem cells as a model for embryotoxicity screening. Regener. Med., 4, 449-459. https://doi.org/10.2217/rme.09.13
  53. Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., Carpenter, M.K., Itskovitz-Eldor, J. and Rao, M.S. (2004) Differences between human and mouse embryonic stem cells. Dev. Biol., 269, 360-380. https://doi.org/10.1016/j.ydbio.2003.12.034
  54. Suzuki, N., Yamashita, N., Koseki, N., Yamada, T., Kimura, Y., Aiba, S., Toyoizumi, T., Watanabe, M., Ohta, R., Tanaka, N. and Saito, K. (2012) Assessment of technical protocols for novel embryonic stem cell tests with molecular markers (Hand1- and Cmya1-ESTs): a preliminary cross-laboratory performance analysis. J. Toxicol. Sci., 37, 845-851. https://doi.org/10.2131/jts.37.845
  55. Schulpen, S.H., Robinson, J.F., Pennings, J.L., van Dartel, D.A. and Piersma, A.H. (2013) Dose response analysis of monophthalates in the murine embryonic stem cell test assessed by cardiomyocyte differentiation and gene expression. Reprod. Toxicol., 35, 81-88. https://doi.org/10.1016/j.reprotox.2012.07.002
  56. van Dartel, D.A., Pennings, J.L., de la Fonteyne, L.J., van Herwijnen, M.H., van Delft, J.H., van Schooten, F.J. and Piersma, A.H. (2010) Monitoring developmental toxicity in the embryonic stem cell test using differential gene expression of differentiation-related genes. Toxicol. Sci., 116, 130-139. https://doi.org/10.1093/toxsci/kfq127
  57. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H. and Smith, A. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379-391. https://doi.org/10.1016/S0092-8674(00)81769-9
  58. Smith, A.G. (2001) Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol., 17, 435-462. https://doi.org/10.1146/annurev.cellbio.17.1.435
  59. Sacchetti, P., Carpentier, R., Segard, P., Olive-Cren, C. and Lefebvre, P. (2006) Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1. Nucleic Acids Res., 34, 5515-5527. https://doi.org/10.1093/nar/gkl712
  60. Pines, G., Danbolt, N.C., Bjoras, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E. and Kanner, B.I. (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature, 360, 464-467. https://doi.org/10.1038/360464a0
  61. Kasama-Yoshida, H., Tohyama, Y., Kurihara, T., Sakuma, M., Kojima, H. and Tamai, Y. (1997) A comparative study of 2',3'-cyclic-nucleotide 3'-phosphodiesterase in vertebrates: cDNA cloning and amino acid sequences for chicken and bullfrog enzymes. J. Neurochem., 69, 1335-1342.
  62. Dirkx, R. Jr., Thomas, A., Li, L., Lernmark, A., Sherwin, R.S., De Camilli, P. and Solimena, M. (1995) Targeting of the 67-kDa isoform of glutamic acid decarboxylase to intracellular organelles is mediated by its interaction with the NH2-terminal region of the 65-kDa isoform of glutamic acid decarboxylase. J. Biol. Chem., 270, 2241-2246. https://doi.org/10.1074/jbc.270.5.2241
  63. Sarko, J. and Pollack, C.V. Jr. (2002) Cardiac troponins. J. Emerg. Med., 23, 57-65. https://doi.org/10.1016/S0736-4679(02)00463-8
  64. Bround, M.J., Wambolt, R., Luciani, D.S., Kulpa, J.E., Rodrigues, B., Brownsey, R.W., Allard, M.F. and Johnson, J.D. (2013) Cardiomyocyte ATP production, metabolic flexibility, and survival require calcium flux through cardiac ryanodine receptors in vivo. J. Biol. Chem., 288, 18975-18986. https://doi.org/10.1074/jbc.M112.427062
  65. Cohen-Haguenauer, O., Barton, P.J., Van Cong, N., Cohen, A., Masset, M., Buckingham, M., and Frezal, J. (1989) Chromosomal assignment of two myosin alkali light-chain genes encoding the ventricular/slow skeletal muscle isoform and the atrial/fetal muscle isoform (MYL3, MYL4). Hum. Genet., 81, 278-282. https://doi.org/10.1007/BF00279004

Cited by

  1. A Modified Murine Embryonic Stem Cell Test for Evaluating the Teratogenic Effects of Drugs on Early Embryogenesis vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0145286
  2. Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene vol.31, pp.11, 2015, https://doi.org/10.1002/tox.22142
  3. Models of germ cell development and their application for toxicity studies vol.56, pp.8, 2015, https://doi.org/10.1002/em.21946
  4. An in vitro gastrulation model recapitulates the morphogenetic impact of pharmacological inhibitors of developmental signaling pathways vol.82, pp.12, 2015, https://doi.org/10.1002/mrd.22585
  5. High-Dose Fluoride Impairs the Properties of Human Embryonic Stem Cells via JNK Signaling vol.11, pp.2, 2016, https://doi.org/10.1371/journal.pone.0148819
  6. Developmental Toxicology Screens: A Report on the Progress of the Methodology and Future Applications vol.29, pp.4, 2016, https://doi.org/10.1021/acs.chemrestox.5b00458
  7. model for nanotoxicity assessments vol.36, pp.10, 2016, https://doi.org/10.1002/jat.3347
  8. Re-registration Challenges of Glyphosate in the European Union vol.6, pp.2296-665X, 2018, https://doi.org/10.3389/fenvs.2018.00078