DOI QR코드

DOI QR Code

Production of Biopolyols, Bioisocyanates and Biopolyurethanes from Renewable Biomass

바이오매스 자원을 활용한 바이오폴리올, 바이오이소시아네이트 및 바이오폴리우레탄 제조

  • Jo, Yoon Ju (Department of Chemical Engineering, College of Engineering, Kyung Hee University) ;
  • Choi, Sung Hee (Department of Chemical Engineering, College of Engineering, Kyung Hee University) ;
  • Lee, Eun Yeol (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
  • 조윤주 (경희대학교 공과대학 화학공학과) ;
  • 최성희 (경희대학교 공과대학 화학공학과) ;
  • 이은열 (경희대학교 공과대학 화학공학과)
  • Received : 2013.07.14
  • Accepted : 2013.08.12
  • Published : 2013.12.10

Abstract

The shortage of fossil fuel and problem of greenhouse gas exhaustion drive the production of biopolymer in a environment-friendly manner. Polyurethane is a polymer formed by reacting an isocyanate (-NCO) with a polyol (-OH) to form urethane link (-NHCOO-). Polyurethane is one of the most widely used polymers in automobile, construction and chemical industries. Two monomers for the polymerization of polyurethane, polyols and isocyanates, can be produced from renewable biomass such as plant oil, cellulose, lignin and etc. Biopolyol production from plant oil has already been implemented in commercial-scale production. In this paper, recent progresses on bio-based approaches on the production of biopolyols, bio-isocyanates and bio-substituent or isocyanate from bio-feedstock are reviewed alongside polymerization and characterization of biopolyurethane for industrial applications.

화석 연료의 고갈 및 온실가스 배출문제로 인해 보다 환경 친화적인 바이오매스 유래의 고분자 생산에 대한 연구가 진행되고 있다. 폴리우레탄은 -OH 화합물과 -NCO 화합물의 중합반응에 의해 생성된 우레탄(-NHCOO-) 결합을 포함하는 고분자 화합물을 통칭하며 자동차, 건축, 화학 분야에서 가장 광범위하게 사용된다. 폴리우레탄의 원료인 폴리올과 이소시아네이트는 식물성 천연유지, 셀룰로오스, 리그닌 등 재생 가능한 바이오매스로부터 생산이 가능하다. 식물성 천연유지 유래의 바이오폴리올은 이미 상업적 규모로 생산되고 있다. 본 총설은 다양한 바이오매스로부터 바이오폴리올, 바이오이소시아네이트, 이소시아네이트 대체화합물 관련 최신 기술개발 동향 및 이를 기반으로 합성된 바이오폴리우레탄의 특성을 평가하고, 바이오폴리우레탄의 응용분야와 함께 전망을 분석하였다.

Keywords

References

  1. R. C. Saxena, D. K. Adhikari, and H. B. Goyal, Biomass-based energy fuel through biochemical routes: a review, Renew. Sust. Energ. Rev., 13, 167 (2009). https://doi.org/10.1016/j.rser.2007.07.011
  2. A. Demirbas, Global biofuel strategies, Energy Edu. Sci. Technol., 17, 27 (2006).
  3. J. Hill, E. Nelson, D. Tilman, S. Polasky, and D. Tiffany, Environmental, economic, and energetic costsand benefits of biodiesel and ethanol biofuels, PNAS, 103, 11206 (2006). https://doi.org/10.1073/pnas.0604600103
  4. L. Gouveia and A. C. Oliveira, Microalgae as a raw material for biofuels production, J. Ind. Microbiol. Biotechnol., 36, 269 (2009). https://doi.org/10.1007/s10295-008-0495-6
  5. S. G. Wettstein, D. M. Alonso, E. I. Gürbüz, and J. A. Dumesic, A roadmap for conversion of lignocellulosic biomass to chemicals and fuels, Curr. Opin. Chem. Eng., 1, 218 (2012). https://doi.org/10.1016/j.coche.2012.04.002
  6. A. K. Mohanty, M. Misra, and G. Hinrichsen, Biodegradable polymers and biocomposites: an overview, Macromol. Mater. Eng., 276/277, 1 (2000). https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  7. D. P. Pfister, Y. Xia, and R. C. Larock, Recent advances in vegetable oil‐based polyurethanes, Chem. Sus. Chem., 4, 703 (2011). https://doi.org/10.1002/cssc.201000378
  8. J. Huang, L. Zhang, H. Wei, and X. Cao, Soy protein isolate/kraft lignin composites compatibilized with methylene diphenyl diisocyanate, J. Appl. Polym. Sci., 93, 624 (2004). https://doi.org/10.1002/app.20478
  9. S. H. Lee and S. Wang, Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent, Compos. Pt. A-Appl. Sci. Manuf., 37, 80 (2006). https://doi.org/10.1016/j.compositesa.2005.04.015
  10. C. K. Lyon, V. H. Garrett, and L. A. Goldblatt, Rigid urethane foams from blown castor oils, J. Am. Oil Chem. Soc., 41, 23 (1964). https://doi.org/10.1007/BF02661896
  11. A. Guo, W. Zhang, and Z. S. Petrovic, Structure-property relationships in polyurethanes derived from soybean oil, J. Mater. Sci., 15, 4914 (2006).
  12. Y. H. Hu, Y. Gao, D. N. Wang, C. P. Hu, S. Zu, L. Vanoverloop, and D. Randall, Rigid polyurethane foam prepared from a rape seed oil based polyol, J. Appl. Polym. Sci., 84, 591 (2002). https://doi.org/10.1002/app.10311
  13. V. B. Veronese, R. K. Menger, M. M. C. Forte, and C. L. Petzhold, Rigid polyurethane foam based on modified vegetable oil, J. Appl. Polym. Sci., 120, 530 (2011). https://doi.org/10.1002/app.33185
  14. M. A. Mosiewicki, G. A. Dell'arciprete, M. I. Aranguren, and N. E. Marcovich, Polyurethane foams obtained from castor oil-based polyol and filled with wood flour, J. Compos. Mater., 43, 3057 (2009). https://doi.org/10.1177/0021998309345342
  15. H. Deka and N. Karak, Prog. Bio-based hyperbranched polyurethanes for surface coating applications, Org. Coat., 66, 192 (2009). https://doi.org/10.1016/j.porgcoat.2009.07.005
  16. A. Kaushik and P. Singh, Synthesis and characterization of castor oil/trimethylol propane polyol as raw materials for polyurethanes using time-of-flight mass spectroscopy, Int. J. Polym. Anal. Charact, 10, 373 (2005). https://doi.org/10.1080/10236660500479585
  17. M. D. Bhabhe and V. D. Athawale, Chemoenzymatic synthesis of urethane oil based on special functional group oil, J. Appl. Polym. Sci., 69, 1451 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980815)69:7<1451::AID-APP21>3.0.CO;2-V
  18. C. S. Lee, T. L. Ooi, C. H. Chuah, and S. Ahmad, Rigid polyurethane foam production from palm oil-based epoxidized diethanolamides, J. Am. Oil Chem. Soc., 84, 1161 (2007). https://doi.org/10.1007/s11746-007-1150-5
  19. A. Guo, D. Demydov, W. Zhang, and Z. S. Petrovic, Polyols and polyurethanes from hydroformylation of soybean oil, J. Polym. Environ., 10, 49 (2002). https://doi.org/10.1023/A:1021022123733
  20. Z. S. Petrovic, W. Zhang, and I. Javni, Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis, Biomacromolecules, 6, 713 (2005). https://doi.org/10.1021/bm049451s
  21. N. Shiraishi, S. Onodera, M. Ohtani, and T. Masumoto, Dissolution of etherified wood into polyhydric alcohols or bisphenol A and their application in preparing wooden polymeric materials, Mokuzai Gakkaishi, 31, 418 (1985).
  22. S. Pu and N. Shiraishi, Liquefaction of wood without a catalyst, I.: time course of wood liquefaction with phenols and effects of wood/phenol ratios, Mokuzai Gakkaishi, 39, 446 (1993).
  23. D. Maldas and N. Shiraishi, Liquefaction of biomass in the presence of phenol and using alkaline and salts as the catalyst, Biomass Bioenerg., 12, 273 (1997). https://doi.org/10.1016/S0961-9534(96)00074-8
  24. M. H. Alma, M. Yoshioka, Y. Yao, and N. Shiraishi, Phenolation of wood using oxalic acid as a catalyst: effect of temperature and hydrochloric acid addition, J. Appl. Polym. Sci., 61, 675 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960725)61:4<675::AID-APP11>3.0.CO;2-X
  25. T. Yamada and H. Ono, Rapid liquefaction of lignocellulosic waste by using ethylene carbonate, Bioresour. Technol., 70, 61 (1999). https://doi.org/10.1016/S0960-8524(99)00008-5
  26. S. P. Mun and E. M. Hassan, Liquefaction of lignocellulosic biomass with dioxane/polar solvent mixtures in the presence of an acid catalyst, J. Ind. Eng. Chem., 10, 473 (2004).
  27. E. M. Hassan and S. P. Mun, Liquefaction of pine bark using phenols and lower alcohols with methane sulfonic acid catalyst, J. Ind. Eng. Chem., 8, 359 (2002).
  28. Y. Yao, M. Yoshioka, and N. Shiraishi, Rigid polyurethane foams from combined liquefaction mixtures of wood and starch, Mokuzai Gakkaishi, 41, 659 (1995).
  29. Y. Yao, M. Yoshioka, and N. Shiraishi, Water-absorbing polyurethane foams from liquefied starch, J. Appl. Polym. Sci., 60, 1939 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960613)60:11<1939::AID-APP18>3.0.CO;2-W
  30. F. Chen and Z. Lu, Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products, J. Appl. Polym. Sci., 111, 508 (2009). https://doi.org/10.1002/app.29107
  31. F. Yu, Z. Le, P. Chen, Y. Liu, X. Lin, and R. Ruan, Atmospheric pressure liquefaction of dried distillers grains (DDG) and making polyurethane foams from liquefied DDG, Appl. Biochem. Biotechnol., 148, 235 (2008). https://doi.org/10.1007/s12010-007-8040-z
  32. Y. Yan, H. Pang, X. Yang, R. Zhang, and B. Liao, Preparation and characterization of water-blown polyurethane foams from liquefied cornstalk polyol, J. Appl. Polym. Sci., 110, 1099 (2008). https://doi.org/10.1002/app.28692
  33. E. M. Hassan and N. Shukry, Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues, Ind. Crop. Prod., 27, 33 (2008). https://doi.org/10.1016/j.indcrop.2007.07.004
  34. D. T. Johnson and K. A. Taconi, The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production, Environ. Prog., 26, 338 (2007). https://doi.org/10.1002/ep.10225
  35. Y. Wang, J. Wu, Y. Wan, H. Lei, F. Yu, P. Chen, X. Lin, Y. Liu, and R. Ruan, Liquefaction of corn stover using industrial biodiesel glycerol, Int. J. Agric. Biol. Eng., 2, 32 (2009).
  36. U.S. Patent, 0,054,059 (2011).
  37. S. Kumar, K. S. Manjula, and Siddaramaiah, Castor oil-based polyurethane-polyester nonwoven fabric composites: mechanical properties, chemical resistance, and water sorption behavior at different temperatures, J. Appl. Polym. Sci., 105, 3153 (2007). https://doi.org/10.1002/app.24481
  38. A. Zlatanic, C. Lava, W. Zhang, and Z. S. Petrovic, Effect of structure on properties of polyols and polyurethanes based on different vegetable oils, J. Polym. Sci. Polym. Phys., 42, 809 (2004). https://doi.org/10.1002/polb.10737
  39. S. Hu, C. Wan, and Y. Li, Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw, Bioresour. Technol., 103, 227 (2012). https://doi.org/10.1016/j.biortech.2011.09.125
  40. G. Cayli and S. Kusefoglu, Biobased polyisocyanates from plant oil triglycerides: Synthesis, polymerization, and characterization, J. Appl. Pol. Sci., 109, 2948 (2008). https://doi.org/10.1002/app.28401
  41. L. Hojabri, H. Kong, and S. S. Narine, Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization, Biomacromolecules, 10, 884 (2009). https://doi.org/10.1021/bm801411w
  42. L. Hojabri, X. Kong, and S. S. Narine, Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane, J. Polym. Sci. Polym. Chem., 48, 3302 (2010). https://doi.org/10.1002/pola.24114
  43. W. G. Glasser, O. H. H. Hsu, D. L. Reed, R. C. Forte, and L. C. F. Wu, Lignin-derived polyols, polyisocyanates, Urethane Chemistry and Applications, 172, 311, Kenneth N. Edwards Enterprises, United States (1981).
  44. D. V. Palaskar, A. Boyer, E. Cloutet, C. Alfos, and H. Cramail, Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach, Biomacromolecules, 11, 1202 (2010). https://doi.org/10.1021/bm100233v
  45. B. Tamami, S. Sohn, and G. L. Wilkes, Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks, J. Appl. Polym. Sci., 92, 883 (2004). https://doi.org/10.1002/app.20049
  46. L. Ubaghs, N. Fricke, H. Keul, and H. Hocker, Rapid communications, polyurethanes with pendant hydroxyl groups: synthesis and characterization, Macromol. Rapid Commun., 25, 517 (2004). https://doi.org/10.1002/marc.200300064
  47. I. Javni, Z. S. Petrovic, A. Guo, and R. Fuller, Thermal stability of polyurethanes based on vegetable oils, J. Appl. Polym. Sci., 77, 1723 (2000). https://doi.org/10.1002/1097-4628(20000822)77:8<1723::AID-APP9>3.0.CO;2-K
  48. Z. S. Petrovic, M. J. Cevallos, I. Javni, D. W. Schaefer, and R. Justice, Soy-oil-based segmented polyurethanes, J. Polym. Sci. Polym. Phys., 43, 3178 (2005).
  49. X. Kong, J. Yue, and S. S. Narine, Physical properties of canola oil based polyurethane networks, Biomacromolecules, 8, 3584 (2007). https://doi.org/10.1021/bm0704018
  50. A. Terheiden and R. Hubel, Scientific approach to the question 'Why natural oil based polyols affect the physical properties of conventional slabstock foam, Polyurethanes technical conference, American Chemistry Council, 620, American Chemistry Council and Arlington, VA., United States (2010).
  51. M. Ionescu, Z. S. Petrovic, and X. Wan, Ethoxylated soybean polyols for polyurethanes, J. Polym. Environ., 15, 237 (2007). https://doi.org/10.1007/s10924-007-0065-4
  52. J. S. Ko, J. H. Lee, and K. C. Sung, A Study on the powders for makeup cosmetics, J. Kor. Oil Chem. Soc., 29, 11 (2012).
  53. K. I. Kim and S. B. Kim, Research trend of bio-Pplyurethane, KIC News, 15, 11 (2012).

Cited by

  1. Non-thermal plasma degradation of dye using an underwater dielectric barrier discharge created inside a porous hydrophobic ceramic tube vol.131, pp.2, 2015, https://doi.org/10.1111/cote.12134
  2. Value-added Utilization of Lignin Residue from Pretreatment Process of Lignocellulosic Biomass vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1016
  3. The Study on Application of Biopolyols Obtained by Cellulose Biomass Liquefaction Performed with Crude Glycerol for the Synthesis of Rigid Polyurethane Foams pp.1572-8900, 2017, https://doi.org/10.1007/s10924-017-1145-8
  4. Recent Development in Polyurethanes for Automotives vol.52, pp.4, 2017, https://doi.org/10.7473/ec.2017.52.4.249
  5. 친환경 폴리우레탄 및 충전제 기술동향 vol.20, pp.3, 2013, https://doi.org/10.17702/jai.2019.20.3.116