DOI QR코드

DOI QR Code

Preparation of Ag/TiO2 Particle for Aerobic Benzyl Alcohol Oxidation

Aerobic Benzyl Alcohol Oxidation 반응용 Ag/TiO2 제조

  • Kim, Chang-Soo (Clean Energy Research Center, KIST) ;
  • Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Science & Technology)
  • 김창수 (한국과학기술연구원 청정에너지연구센터) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Received : 2013.08.22
  • Accepted : 2013.09.14
  • Published : 2013.12.10

Abstract

$Ag/TiO_2$ particle was prepared using various ionic liquids by wet impregnation. The properties of the particles were significantly affected by the composition of ionic liquids. This is mainly attributed to different abilities of an ionic liquid to coordinate with the silver particle, leading to various coagulation of silver particles. The catalytic activity of the prepared samples was examined for the aerobic benzyl alcohol oxidation. Among the particles, $Ag/TiO_2$ prepared with 1-octyl-3-methylimidazolium tetrafluoroborate showed the best catalytic performance.

다양한 이온성 액체를 사용하여 은이 담지된 이산화티타늄 입자를 제조하였다. 합성에 사용된 이온성 액체의 종류에 따라 입자의 물성이 변하는 것을 관찰하였다. 이는 이온성 액체의 특성이 은 입자들의 결합에 영향을 주기 때문이다. 제조된 입자의 촉매 성능을 측정하기 위하여 산소분위기에서 벤질알코올의 산화반응을 실시하였다. 그 결과 1-octyl-3-methylimidazolium tetrafluoroborate를 이용하여 합성한 $Ag/TiO_2$ 입자가 가장 우수한 촉매 활성을 나타내었다.

Keywords

References

  1. R. A. Sheldon, I. Arends, and A. Dijksman, New developments in catalytic alcohol oxidations for fine chemicals synthesis, Catal. Today, 57, 157-166 (2000). https://doi.org/10.1016/S0920-5861(99)00317-X
  2. R. A. Sheldon, I. W. C. E. Arends, G.-J. T. Brink, and A. Dijksman, Green, Catalytic Oxidations of Alcohols, Acc. Chem. Res., 35, 774-781 (2002). https://doi.org/10.1021/ar010075n
  3. R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidation of Organic Compounds, Academic Press, New York (1981).
  4. R. V. Stevens, K. T. Chapman, and H. N. Weller, Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones, J. Org. Chem., 45, 2030-2032 (1980). https://doi.org/10.1021/jo01298a066
  5. J. R. Holum, Study of the chromium (VI) oxide-pyridine complex, J. Org. Chem., 26, 4814-4816 (1961). https://doi.org/10.1021/jo01070a009
  6. D. G. Lee and U. A. Spitzer, Aqueous dichromate oxidation of primary alcohols, J. Org. Chem., 35, 3589-3590 (1970). https://doi.org/10.1021/jo00835a101
  7. R. J. Highet and W. C. Wildman, Solid Manganese Dioxide as an Oxidizing Agent, J. Am. Chem. Soc., 77, 4399-4401 (1955). https://doi.org/10.1021/ja01621a062
  8. F. M. Menger and C. Lee, Synthetically useful oxidations at solid sodium permanganate surfaces, Tetrahedron Lett., 22, 1655-1656 (1981). https://doi.org/10.1016/S0040-4039(01)90402-2
  9. K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, and K. Kaneda, Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 122, 7144-7145 (2000). https://doi.org/10.1021/ja001325i
  10. T. Nishimura, T. Onoue, K. Ohe, and S. Uemura, Palladium (II)-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen, J. Org. Chem., 64, 6750-6755 (1999). https://doi.org/10.1021/jo9906734
  11. M. Hasan, M. Musawir, P. N. Davey, and I. V. Kozhevnikov, Oxidation of primary alcohols to aldehydes with oxygen catalysed by tetra-n-propylammonium perruthenate, J. Mol. Catal. A Chem., 180, 77-84 (2002). https://doi.org/10.1016/S1381-1169(01)00410-1
  12. K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters : a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004). https://doi.org/10.1021/ja0488683
  13. A. Abad, P. Concepcion, A. Corma, and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 44, 4066-4069 (2005). https://doi.org/10.1002/anie.200500382
  14. W. Liu and M. Flytzani-Stephanopoulos, Cu-and Ag-modified cerium oxide catalysts for methane oxidation, J. Catal., 153, 304-316 (1995). https://doi.org/10.1006/jcat.1995.1132
  15. A. Arcadi and S. D. Giuseppe, Recent applications of gold catalysis in organic synthesis, Curr. Org. Chem., 8, 795-812 (2004). https://doi.org/10.2174/1385272043370564
  16. Z. Q. Tian, B. Ren, and D. Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B, 106, 9463-9483 (2002).
  17. P. Vonmatt and A. Pfaltz, Chiral Phosphinoaryldihydrooxazoles as Ligands in Asymmetric Catalysis : Pd‐Catalyzed Allylic Substitution, Angew. Chem. Int. Ed., 32, 566-568 (1993). https://doi.org/10.1002/anie.199305661
  18. D. Astruc, F. Lu, and J. R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed., 44, 7852-7872 (2005). https://doi.org/10.1002/anie.200500766
  19. M. Yoon, Y. Kim, V. Volkov, H. J. Song, Y. J. Park, and I. W. Park, Superparamagnetic properties of nickel nanoparticles in an ion-exchange polymer film, Mater. Chem. Phys., 91, 104-107 (2005). https://doi.org/10.1016/j.matchemphys.2004.10.059
  20. K. Mallick, M. J. Witcom, and M. S. Scurrell, Self-assembly of silver nanoparticles : formation of a thin silver film in a polymer matrix, Mater. Sci. Eng. C., 26, 87-91 (2006). https://doi.org/10.1016/j.msec.2005.06.004
  21. S. He, J. Yao, P. Jiang, D. Shi, H. Zhang, S. Xie, S. Pang, and H. Gao, Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice, Langmuir, 17, 1571-1575 (2001). https://doi.org/10.1021/la001239w
  22. A. Manna, T. Imae, M. Iida, and N. Hisamatsu, Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex, Langmuir, 17, 6000-6004 (2001). https://doi.org/10.1021/la010389j
  23. Y. Sun and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 298, 2176-2179 (2002). https://doi.org/10.1126/science.1077229
  24. E. Hao, K. L. Kelly, J. T. Hupp, and G. C. Schats, Synthesis of silver nanodisks using polystyrene mesospheres as templates, J. Am. Chem. Soc., 124, 15182-15183 (2002). https://doi.org/10.1021/ja028336r
  25. M. Maillard, S. Gieorgio, and M. P. Pileni, Tuning the size of silver nanodisks with similar aspect ratios : synthesis and optical properties, J. Phys. Chem., B, 107, 2466-2470 (2003). https://doi.org/10.1021/jp022357q
  26. P. Wasserscheid and W. Keim, Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed., 39, 3773-3789 (2000).
  27. T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev., 99, 2071-2083 (1999). https://doi.org/10.1021/cr980032t
  28. K. S. Yoo, Synthesis of submicron silver particle using room temperature ionic liquids, Appl. Chem. Eng., 23, 14-17 (2012).